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Abstract We present a study of supervised neural network architectures capable of
internal simulation of perceptions and actions. These architectures employ the novel
Associative Self-Organizing Map (A-SOM) as a hidden layer (for the representation
of perceptions), and a neural network adapted by the delta rule as an output layer
(for the representation of actions). The A-SOM develops a representation of its in-
put space, but in addition it also learns to associate its activity with an arbitrary
number of additional (possibly delayed) inputs. We test architectures, with as well
as without, recurrent connections. The simulation resultsare very encouraging. The
architecture without recurrent connections correctly classified 100% of the training
samples and 80% of the test samples. After ceasing to receiveany input the best of
the architectures with recurrent connections was able to continue to produce 100%
correct output sequences for 28 epochs (280 iterations), and then to continue with
90% correct output sequences until epoch 42.

1 Introduction

It has been suggested that humans and maybe other higher animals are able to in-
ternally simulate interactions with their environment. According to the simulation
hypothesis [6] this can be done by utilizing three proposed mechanisms. First (sim-
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ulation of actions), it is assumed that brain activity can occur that resembles the
activity that normally occurs when actions are performed, except that the motor out-
put is suppressed during simulation. Second (perceptual simulation), the brain can
elicit activity in sensory cortex that resembles the activity that would normally occur
as a consequence of sensory input. The third assumption (anticipation) is that both
overt and merely simulated actions can elicit perceptual simulation of the probable
consequences of the action. (Simulated perception may alsobe elicited by sensory
activity in a different modality.) In overt interaction with the environment, the con-
sequences of an action generate sensory input that can function as stimuli for new
actions. In simulated interaction (Fig 1 b), simulated actions elicit sensory conse-
quences via associatively learned perceptual simulationsrather than via the physical
consequences and the sense organs (Fig 1 a). An internal simulation might start with
a real perception and continue with a chain of simulated actions and perceptions.
Obviously this ability has survival value, since it provides the animal with a way of
evaluating a potential course of action before acting it outin the physical world with
perhaps lethal consequences.

An artificial agent acting on its own in the real world should have this ability
as well. A good question is how to implement it. One way to do itwould be a
connectionist approach, i.e. to try to find a suitable neuralnetwork architecture with
this ability. Ziemke et al [12] have done such experiments together with a simulated
Khepera robot, using a genetic algorithm to set the values ofthe weights.

Previously we have focused on the perceptual side of the problem. Thus we have
done experiments with a novel self-organizing neural network called the Associa-
tive Self-Organizing Map (A-SOM). The A-SOM is an extensionof the SOM [11],
which learns to associate its activity with additional inputs. This was done in sim-
ulations with an A-SOM which received the activities of two external SOMs as
additional inputs [9], and in the context of haptic perception were we implemented
a bio-inspired self-organizing texture and hardness perception system which auto-
matically learned to associate the self-organized representations of these two sub-
modalities (A-SOMs) with each other [7] [8]. We have also done experiments with
a system consisting of two connected A-SOMs [10]. One of these A-SOMs also

Fig. 1 a. Real interaction
with environment. Stimulus
S1 causes perceptual activity
s1, which causes preparatory
responser1 and overt response
R1. R1 causes predictable new
stimulusS2, which causes new
sensory activity etc. b. Simu-
lated interaction. Preparatory
responser1 elicits, via inter-
nal association mechanisms,
perceptual activitys2 before
overt behaviour occurs and
causes new stimulus.
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learned to associate its current activity with its activityin the previous iteration.
This created a novel kind of recurrent Self-Organizing Map which was able to learn
perceptual sequences. This activity sequence could be invoked by input to either of
the two A-SOMs or both.

In this paper we take the next step and add an action layer to the A-SOM, thus
obtaining an architecture able to simulate chains of both perceptions and actions.
This implies an architecture which can elicit reasonable sequences of activity both
in its perceptual network (hidden layer) and in its action network (output layer). We
present four supervised neural network architectures thatemploy the A-SOM as a
hidden layer together with an output layer adapted by the delta rule. One of these ar-
chitectures only has feed-forward connections and is suitable for classification tasks.
The other three architectures in addition use recurrent connections that make them
able to continue with internal simulations of both perceptions and actions in the
absence of input. These architectures are related to the well known recurrent super-
vised neural network architectures of Jordan and Elman [3] but adds the properties
of the SOM.

The implementation of all code for the experiments presented in this paper was
done in C++ using the neural modeling framework Ikaros [1].

2 Neural Network Architectures

All architectures discussed in this paper have a common basic structure. Thus they
consist of two layers (actually two separate but connected neural networks), i.e. a
hidden layer and an output layer. The hidden layer consists of an A-SOM which is
fully connected with forward connections to the output layer (with a time delay of
one iteration during a simulation). The output layer consists of a grid of neurons
that are adapted by the delta rule to get an activity that converges to the provided
desired output. The different architectures discussed differ in whether they include
recurrent feedback connections and if so how these are connected.

2.1 The Hidden Layer

The hidden layer consists of an Associative Self-Organizing Map (A-SOM) [9],
which can be considered a SOM that learns to associate its activity with (possibly
delayed) additional inputs. The A-SOM consists of anI × J grid of a fixed number
of neurons and a fixed topology. Each neuronni j is associated withr + 1 weight
vectorswa

i j ∈ Rn andw1
i j ∈ Rm1,w2

i j ∈ Rm2, . . . ,wr
i j ∈ Rmr . All the elements of all the

weight vectors are initialized by real numbers randomly selected from a uniform
distribution between 0 and 1, after which all the weight vectors are normalized, i.e.
turned into unit vectors.
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At time t each neuronni j receivesr + 1 input vectorsxa(t) ∈ Rn andx1(t − d1) ∈
Rm1,x2(t −d2) ∈ Rm2, . . . ,xr(t −dr) ∈ Rmr wheredp is the time delay for input vec-
tor xp, p = 1,2, . . . ,r.

The main net inputsi j is calculated using the standard cosine metric

si j(t) =
xa(t) ·wa

i j(t)

||xa(t)||||wa
i j(t)||

, (1)

The activity in the neuronni j is given by

yi j(t) =
[

ya
i j(t)+ y1

i j(t)+ y2
i j(t)+ . . .+ yr

i j(t)
]

/(r+1) (2)

where the main activityya
i j is calculated by using the softmax function [2]

ya
i j(t) =

(si j(t))
m

maxuv (suv(t))
m (3)

whereu andv ranges over the rows and the columns of the neural network andm is
the softmax exponent.
The ancillary activityyp

i j(t), p= 1,2, . . . ,r is calculated by again using the stan-
dard cosine metric

yp
i j(t) =

xp(t − dp) ·w
p
i j(t)

||xp(t − dp)||||w
p
i j(t)||

. (4)

The neuronc associated with the weight vectorwa
c(t)most similar to the input vector

xa(t), i.e. the neuron with the strongest main activation, is selected:

c = arg maxc{|x
a(t) ·wa

c(t)|} (5)

The weightswa
i jk are adapted by

wa
i jk(t +1) = wa

i jk(t)+α(t)Gi jc(t)
[

xa
k(t)−wa

i jk(t)
]

(6)

where 0≤ α(t) ≤ 1 is the adaptation strength withα(t) → 0 whent → ∞. The

neighbourhood functionGi jc(t) = e
−

||rc−ri j ||

2σ2(t) , whererc ∈ R2 andri j ∈ R2 are location
vectors of neuronsc andni j, is a Gaussian function decreasing with time.

The weightswp
i jl , p = 1,2, . . . ,r, are adapted by

wp
i jl(t +1) = wp

i jl(t)+β xp
l (t − dp)

[

ya
i j(t)− yp

i j(t)
]

(7)

whereβ is the constant adaptation strength.
All weightswa

i jk(t) andwp
i jl(t) are normalized after each adaptation.
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2.2 The Output Layer

The output layer consists of anI × J grid of a fixed number of neurons and a fixed
topology. Each neuronni j is associated with a weight vectorwi j ∈ Rn. All the ele-
ments of the weight vector are initialized by real numbers randomly selected from a
uniform distribution between 0 and 1, after which the weightvector is normalized,
i.e. turned into unit vectors.

At time t each neuronni j receives an input vectorx(t) ∈ Rn.

The activityyi j in the neuronni j is calculated using the standard cosine metric

yi j(t) =
x(t) ·wi j(t)

||x(t)||||wi j(t)||
, (8)

During the learning phase the weightswi jl , are adapted by

wi jl(t +1) = wi jl(t)+β xl(t) [yi j(t)− di j(t)] (9)

whereβ is the constant adaptation strength anddi j(t) is the desired activity for the
neuronni j.

2.3 Tested Variants

We have tested four different architectures that use an A-SOM as a hidden layer
together with the output layer described above. In the first architecture (Fig 2 a) we
fully connected the A-SOM to the output layer with feed-forward connections only,
i.e. the output layer received the activity of the A-SOM as input, thus creating an
architecture suitable for classification.

The second architecture (Fig 2 b) is similar to the first one but with recurrent
connections added. These recurrent connections feed the activity of the A-SOM
back to the A-SOM itself as ancillary input with a time delay of one iteration. This
yields an architecture able to produce proper sequences of output activity even when
the A-SOM stops receiving input.

The third architecture (Fig 2 c) is similar to the second but with the recurrent
connections in the second architecture replaced by recurrent connections that feed
the activity of the output layer back to the A-SOM as ancillary input with a time
delay of one iteration. As the second architecture this alsoyields an architecture
able to produce proper sequences of output activity even when the A-SOM stops
receiving input.

In the fourth architecture (Fig 2 d) the approaches of the second and the third
architectures are combined, i.e. there are two sets of recurrent connections. Thus
there are both a set of recurrent connections that feed the activity of the A-SOM
back to the A-SOM itself as ancillary input with a time delay of one iteration, and



6 Magnus Johnsson, David Gil, Christian Balkenius and Germund Hesslow

a set of recurrent connections that feed the activity of the output layer back to the
A-SOM as ancillary input with a time delay of one iteration. Also this architecture
are suitable for the production of proper sequences of output activity even when the
A-SOM stops receiving input.

3 Simulations

All four tested architectures used an A-SOM with 15×15 neurons as a hidden layer,
and an output layer consisting of 1×10 neurons.

To test the architectures we constructed a set of 10 trainingsamples by random
selection, with uniform distribution, from a subsets of the planes= {(x,y)∈R2;0≤
x ≤ 1,0≤ y ≤ 1}. The selected points were then mapped to a subset ofR3 by adding
a third constant element of 0.5, yielding a training set of three-dimensional vectors.
The reason for this was that a Voronoi tessellation of the plane was calculated from
the generated points to later aid in the determination of hownew points in the plane
should be classified (the first architecture described above). To make this Voronoi

A-SOMA-SOM

A-SOMA-SOM

a)
 b)


c)
 d)


Fig. 2 The four tested neural network architectures. a) The A-SOM is connected to the output
layer with feed-forward connections only; b) The A-SOM is connected to the output layer with
feed-forward connections and to itself with recurrent connections; c) The A-SOM is connected to
the output layer with feed-forward connections, and the output layer is connected with recurrent
connections to the A-SOM; d) The A-SOM is connected to the output layer with feed-forward
connections and to itself with recurrent connections. In addition the output layer is connected with
recurrent connections to the A-SOM.
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tessellation, which is based on the Euclidian metric, useful for this purpose with the
A-SOM in the hidden layer, which uses a metric based on dot product, the set of
points in the plane has to be mapped so that the correspondingposition vectors after
normalization are unique. One way to accomplish such a mapping is by adding a
constant element to each vector. The result of this is that each vector will have a
unique angle inR3. We chose the value 0.5 for the constant elements to maximize
the variance of the angles inR3.

All architectures were trained during 20000 iterations, i.e. during 2000 epochs
when receiving the sequence of 10 training samples. The softmax exponent for the
A-SOMs were set to 1000. The learning rateα(0) of the A-SOMs was initialized to
0.1 with a learning rate decay of 0.9999 (i.e. multiplication of the learning rate with
0.9999 in each iteration), which means the minimum learningrate, set to 0.01, will
be reached at the end of the 20000 training iterations. The neighbourhood radius,
i.e.σ of the neighbourhood functionGi jc(t) in eq. (6), was initialized to 15 for both
A-SOMs and shrunk to 1 during the 20000 training iterations by using a neighbour-
hood decay of 0.9998 (i.e. multiplication of the neighbourhood radius with 0.9998
in each iteration). The A-SOMs used plane topology when calculating the neigh-
bourhood. The learning rateβ for the associative weights in all A-SOMs as well as
for the neurons in the output layer for all architectures wasset to 0.35.

Since these architectures are supervised each training sample was associated
with a desired activity provided to the output layer during the training phase.
The set of desired activitiesD consisted of 10-dimensional vectors, where one
element in each was set to 1 and the other elements were set to 0, i.e. D =
{(1,0, . . . ,0),(0,1, . . . ,0), . . . ,(0,0, . . . ,1)}. This means that after training each sam-
ple of the training set should elicit the highest activationin a unique neuron if the
trained architecture is able to distinguish between the samples in the training set.
Moreover, if the trained architecture receives a new sample(this was tested in the
case of the first architecture described above), not included in the training set, this
should elicit activity in the same output neuron as the closest sample in the train-
ing set. In other words: a new sample located in a certain Voronoi cell of the input
space should elicit the highest activity in the same neuron as the training sample cor-
responding to that particular Voronoi cell. If this is true for a sufficient ratio of the
new samples, then the generalization ability of the architecture should be considered
good.

After the training phase the first architecture described above was tested with the
training samples and with an additional set of 10 new samplesgenerated in the same
way as the training set.

The other three architectures were tested to evaluate theirability to produce
proper sequences of activities in their output layers even when the A-SOMs stopped
receiving input. Thus we only used the training sets in this evaluation, and the se-
quences of activities were considered proper if the same sequence of neurons in the
output layer had the highest activity as when the architectures received input. Thus
these architectures were tested, after the training phase,by first feeding them the
sequence of the 10 training samples once. Then the architectures did not receive any
more input and we recorded the activity for the following 950iterations (see Fig 3
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B, C and D) to see if the architectures were able to reproduce the same sequence
of 10 output activities over and over again. Thus we recordedthe percentage of the
iterations in each epoch (i.e. an epoch was 10 iterations since the training sequence
was the 10 samples in the training set) with proper activity after the architecture
ceased to receive any input.

3.1 Feed-Forward Architecture for Classification

Fig 2 A shows a schematic depiction of the architecture. The training set was used
for all four architectures. The simulation results with thefirst architecture are de-
picted in Fig 3 A. As can be seen in this figure, all samples in the training set elicited
the highest activity in the proper neuron, i.e. 100% correct.

In Fig 3 A we can also see that 8 of the 10 new samples elicited highest activity
in the proper neuron of the output layer. Sample 3 in the new sample set should
have been classified as belonging to the Voronoi cell for sample 3 of the training set,
but was misclassified as belonging to the Voronoi cell for sample 1 in the training
set. Sample 7 in the new sample set should have been classifiedas belonging to the
Voronoi cell for sample 7 of the training set, but was misclassified as belonging to
the Voronoi cell for sample 4 in the training set.

It is worth noting that sample 10 in the new sample set lies at the border between
the Voronoi cells for training samples 4 and 7. This sample was classified as be-
longing to the Voronoi cell for training sample 7, but it would also be considered
correctly classified if it would have been classified as belonging to the Voronoi cell
for training sample 4. An interesting observation was that when receiving this new
sample the activity of the neuron in the output layer that represents the Voronoi cell
for training sample 7 was the most activated neuron in the output layer, and the
neuron that represents the Voronoi cell for training sample4 was the second most
activated neuron in the output layer.

3.2 Architecture with Recurrent A-SOM Connections

The simulation results with the second architecture are depicted in Fig 3 B. In this
figure we can see that this architecture was able to reproducethe sequence of the
training samples with 100% correctness in the first 28 epochs(i.e. for 280 iterations),
with 90% correctness until epoch 42, and then there was a gradual decline until it
reached a level of 20% correct activities at epoch 76. This still was the performance
level at epoch 95.
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3.3 Architecture with Recurrent Connections from the Output
Layer to the A-SOM

The simulation results with the third architecture are depicted in Fig 3 C. In this
figure we can see that this architecture was able to reproducethe sequence of the
training samples with 100% correctness in the first 3 epochs (i.e. for 30 iterations),
then there was a rapid decline until a level of 0% correct activities were reached at
epoch 14. This level of 0% correct activities continued until epoch 71 when it started
to improve again. It reached a new peak of 50% correct activities between epochs
79 and 86. After that there was a decline again and the level of0% correct activities
was reached again at epoch 95.

Fig. 3 The simulation results. A) The results with the Feed-Forward Architecture for Classifica-
tion. 100% of the training samples and 80% of the test sampleswere recognised; B) The results
with the Architecture with Recurrent A-SOM Connections. After ceasing to receive any input this
architecture was able to continue to produce 100% correct sequences of output for 28 epochs, and
then continue with 90% correct sequences until epoch 42; C) The results with the Architecture with
Recurrent Connections from the Output Layer to the A-SOM. There was 100% correct reproduc-
tion of the output sequence in the first 3 epochs after ceasingto receive any input; D) The results
with the Architecture with Recurrent A-SOM Connections andRecurrent Connections from the
Output Layer to the A-SOM. There was 100% correct reproduction of the output sequence in the
first 8 epochs after ceasing to receive any input.
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3.4 Architecture with Recurrent A-SOM Connections and
Recurrent Connections from the Output Layer to the A-SOM

The simulation results with the fourth architecture are depicted in Fig 3 D. In this
figure we can see that this architecture was able to reproducethe sequence of the
training samples with 100% correctness in the first 8 epochs (i.e. for 80 iterations),
then there was a rapid decline until a level of 0% correct activities were reached
at epoch 13. This level of 0% correct activities continued until epoch 63 when it
started to improve again. It reached a new peak of 90% correctactivities between
epochs 67 and 69. After that there was a decline again and the level of 0% correct
activities was reached again at epoch 81. This level of 0% correct activities was still
the performance level at epoch 95.

4 Discussion

We have implemented and tested four supervised A-SOM based architectures. The
first architecture was a Feed-Forward Architecture for Classification and it was able
to correctly classify 100% of the training samples as well as80% of a new set of test
samples. The three other architectures used recurrent connections to enable internal
simulation of perceptions and actions.

The second architecture used recurrent connections to feedback the activity of
the A-SOM to itself as ancillary activity with a time delay ofone iteration. After
ceasing to receive any input this architecture was able to continue to produce 100%
correct sequences of output for 28 epochs, and then continuewith 90% correct se-
quences until epoch 42.

The third architecture used recurrent connections to feed back the activity of the
output layer to the A-SOM as ancillary input with a time delayof one iteration. This
architecture was able to continue to produce 100% correct sequences of output for
3 epochs after ceasing to receive any input.

The fourth architecture used two sets of recurrent connections. One set of re-
current connections were used to feed back the activity of the A-SOM to itself as
ancillary activity with a time delay of one iteration. The other set of recurrent con-
nections were used to feed back the activity of the output layer to the A-SOM as
ancillary input, also with a time delay of one iteration. This architecture was able to
continue to produce 100% correct sequences of output for 8 epochs after ceasing to
receive any input.

When comparing the three architectures with recurrent connections, the architec-
ture with recurrent connections that feed back the activityof the A-SOM to itself is
clearly the best. This is because it is able to continue with proper output sequences
much longer than the other recurrent architectures in the absence of input.

That the correctness of the output sequences decline with time in the three archi-
tectures with recurrent connections is reasonable and it isprobably due to that the
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present activity elicit similar (but not exactly the same) activity in the succeeding
iteration, which over time should lead to an increased deviation from the correct
activity.

A reasonable guess to why the architecture with recurrent connections that feed
back the activity of the A-SOM to itself is better than the architecture with recurrent
connections from the output layer to the A-SOM is as follows:It should be possible
to keep more information when associating the activity in the A-SOM with the ac-
tivity of the A-SOM in the previous iteration than when associating the activity of
the A-SOM with the activity of the output layer in the previous iteration. The rea-
son is dimensionality, i.e. the number of connections is much larger in the former
case than in the latter because the A-SOM in our simulations contains 225 neurons
whereas the output layer contains only 10.

The reason that there is a second peak in the two architectures with recurrent
connections from the output layer to the A-SOM is probably similar. There is a
higher probability that the activity pattern in the 10 output neurons starts to become
proper again after some time than that the activity pattern in the 225 neurons in
the A-SOM happens to become proper. However, we have no idea about why the
second peak comes earlier, reaches a higher level and is morenarrow in the fourth
architecture than the second peak in the third architecture.

A somewhat surprising result was that the fourth architecture, i.e. the one with
recurrent connections from the output layer to the A-SOM as well as recurrent con-
nections from the A-SOM to the A-SOM is not better than the second architecture,
i.e. the one with recurrent connections from the A-SOM to itself. We had expected
it to be because it should be able to keep more information. Probably this is due to
the way the total activity is calculated in the A-SOM, i.e. byaveraging the ancillary
activities and the main activity. This means that the ancillary input from the output
layer will have as much influence on the total activity of the A-SOM as the ancillary
activity with the time delayed A-SOM activity. Thus a performance somewhere in
between the performance of the architecture with recurrentconnections from the
A-SOM and the performance of the architecture with recurrent connections from
the output layer to the A-SOM would be expected. This is also what we got in the
simulations.

One idea for further development of the presented architectures is to use several
sets of recurrent connections with different time delays toimprove the ability to
continue with proper output sequences in the absence of input. One drawback with
this approach is of course the increased computational burden. Thus it will be a
matter of weighting the improved ability to continue with proper output sequences
against the additional computational burden.

Another idea is that it is conceivable to develop a variant ofthe A-SOM based
on the Growing Cell Structure [4] or the Growing Grid [5]. In this way it might
be possible to create an architecture that automatically creates a suitable number
of neurons with a suitable topology. This would yield a suitable size of the hidden
layer to represent the clusters in the particular input space.
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