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Abstract We present a study of supervised neural network architesitapable of
internal simulation of perceptions and actions. Theseitactures employ the novel
Associative Self-Organizing Map (A-SOM) as a hidden layer the representation
of perceptions), and a neural network adapted by the ddiaasian output layer
(for the representation of actions). The A-SOM developspaesentation of its in-
put space, but in addition it also learns to associate itiwigctvith an arbitrary
number of additional (possibly delayed) inputs. We teshiéectures, with as well
as without, recurrent connections. The simulation results/ery encouraging. The
architecture without recurrent connections correctlgsifted 100% of the training
samples and 80% of the test samples. After ceasing to rearivanput the best of
the architectures with recurrent connections was able ntiraee to produce 100%
correct output sequences for 28 epochs (280 iterationd)themn to continue with
90% correct output sequences until epoch 42,

1 Introduction

It has been suggested that humans and maybe other highealarira able to in-
ternally simulate interactions with their environment.cAcding to the simulation
hypothesis [6] this can be done by utilizing three proposedmanisms. First (sim-
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ulation of actions), it is assumed that brain activity cacuwdhat resembles the
activity that normally occurs when actions are performedeet that the motor out-
put is suppressed during simulation. Second (perceptomilation), the brain can
elicit activity in sensory cortex that resembles the attithat would normally occur
as a consequence of sensory input. The third assumptioifetion) is that both
overt and merely simulated actions can elicit perceptualiktion of the probable
consequences of the action. (Simulated perception maybalsticited by sensory
activity in a different modality.) In overt interaction waithe environment, the con-
sequences of an action generate sensory input that candiu@et stimuli for new
actions. In simulated interaction (Fig 1 b), simulated @i elicit sensory conse-
quences via associatively learned perceptual simulataghsr than via the physical
consequences and the sense organs (Fig 1 a). An interndasonumight start with
a real perception and continue with a chain of simulatecbastand perceptions.
Obviously this ability has survival value, since it provsdée animal with a way of
evaluating a potential course of action before acting itiothe physical world with
perhaps lethal consequences.

An artificial agent acting on its own in the real world shoulavé this ability
as well. A good question is how to implement it. One way to dwauld be a
connectionist approach, i.e. to try to find a suitable nenetvork architecture with
this ability. Ziemke et al [12] have done such experimengetber with a simulated
Khepera robot, using a genetic algorithm to set the valuéiseofveights.

Previously we have focused on the perceptual side of thdgmmollhus we have
done experiments with a novel self-organizing neural nétwealled the Associa-
tive Self-Organizing Map (A-SOM). The A-SOM is an extensaftthe SOM [11],
which learns to associate its activity with additional itgurhis was done in sim-
ulations with an A-SOM which received the activities of tweternal SOMs as
additional inputs [9], and in the context of haptic perceptivere we implemented
a bio-inspired self-organizing texture and hardness péiae system which auto-
matically learned to associate the self-organized reptatens of these two sub-
modalities (A-SOMSs) with each other [7] [8]. We have also d@xperiments with
a system consisting of two connected A-SOMs [10]. One ofdh®sSOMs also
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learned to associate its current activity with its activiilythe previous iteration.
This created a novel kind of recurrent Self-Organizing Mdyol was able to learn
perceptual sequences. This activity sequence could b&eavaoy input to either of
the two A-SOMs or both.

In this paper we take the next step and add an action layeet&t80M, thus
obtaining an architecture able to simulate chains of botiegmions and actions.
This implies an architecture which can elicit reasonabtpisaces of activity both
in its perceptual network (hidden layer) and in its actiotwoek (output layer). We
present four supervised neural network architectureseimgioy the A-SOM as a
hidden layer together with an output layer adapted by theadele. One of these ar-
chitectures only has feed-forward connections and islsigitar classification tasks.
The other three architectures in addition use recurremections that make them
able to continue with internal simulations of both percepsi and actions in the
absence of input. These architectures are related to th&maiin recurrent super-
vised neural network architectures of Jordan and Elmanu8hdds the properties
of the SOM.

The implementation of all code for the experiments preskintehis paper was
done in C++ using the neural modeling framework lkaros [1].

2 Neural Network Architectures

All architectures discussed in this paper have a commort Isasicture. Thus they
consist of two layers (actually two separate but connectedal networks), i.e. a
hidden layer and an output layer. The hidden layer consisis &-SOM which is

fully connected with forward connections to the output lafeith a time delay of

one iteration during a simulation). The output layer cassis a grid of neurons
that are adapted by the delta rule to get an activity that em®s to the provided
desired output. The different architectures discussddrdif whether they include
recurrent feedback connections and if so how these are ctathe

2.1 The Hidden Layer

The hidden layer consists of an Associative Self-Orgagitap (A-SOM) [9],
which can be considered a SOM that learns to associate itgtagtith (possibly
delayed) additional inputs. The A-SOM consists ofianJ grid of a fixed number
of neurons and a fixed topology. Each neurpnis associated with + 1 weight
vectorsw} € R" andwilj € le,vvizj € R™,....w{; € R™. All the elements of all the
weight vectors are initialized by real numbers randomlgsteld from a uniform
distribution between 0 and 1, after which all the weight vestare normalized, i.e.
turned into unit vectors.
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At time t each neurom;; receivesr + 1 input vectors@(t) € R andx}(t — dy) €

R™ x2(t —dp) € R™,... X (t—dy) € R™ whered, is the time delay for input vec-

torxP,p=1,2,...,r.

The main netinpus;; is calculated using the standard cosine metric
a0 = 0O

: D)W (©)]]

The activity in the neuron;j is given by

(1)

Vij®) = YA +y5 O+ +. 4+Y 0] /(r+1) )
where the main activityf; is calculated by using the softmax function [2]
_ (sje)"
yﬁ(t) - maXJVJ(SJv(t))m (3)

whereu andv ranges over the rows and the columns of the neural networkdad
the softmax exponent.

The ancillary activityyipj (1), p=1,2,...,riscalculated by again using the stan-
dard cosine metric

PSR VD
T e = gl 1

(4)

The neurort associated with the weight vectof(t) most similar to the input vector
X4(t), i.e. the neuron with the strongest main activation, iscteti

c = arg max{e(t) - Wa(t)[} (5)
The weightswf"jk are adapted by

Wikt 1) = W () + a (0)Gijolt) [0 — W (1) (6)

where 0< a(t) < 1 is the adaptation strength withh(t) — 0 whent — c. The
~Ire—ijll

neighbourhood functio@ijc(t) =e 200 , wherer; € R? andri; € R? are location

vectors of neurons andn;j, is a Gaussian function decreasing with time.

The WeightswﬁI ,p=21,2,...,r, are adapted by

W8 (1) = W8 (1) + BxP(t — dp) [y (1)~ Y3 )] )

wheref is the constant adaptation strength.

All Weightsmﬁk(t) andwﬁI (t) are normalized after each adaptation.
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2.2 The Output Layer

The output layer consists of drnx J grid of a fixed number of neurons and a fixed
topology. Each neuron; is associated with a weight vectar; € R". All the ele-
ments of the weight vector are initialized by real numbensicanly selected from a
uniform distribution between 0 and 1, after which the weigiattor is normalized,
i.e. turned into unit vectors.

Attimet each neurom;; receives an input vectolt) € R".

The activityy;j in the neurom;; is calculated using the standard cosine metric

X wi(t)
yij(t) = [1x(E)]]||wij (t)]] N

During the learning phase the weightg, are adapted by

Wiji (t+1) = wiji (t) + B (t) [ij (t) — dij(t)] (9)

wheref is the constant adaptation strength akdt) is the desired activity for the
neuronnj.

2.3 Tested Variants

We have tested four different architectures that use an M3© a hidden layer
together with the output layer described above. In the ficdtigecture (Fig 2 a) we
fully connected the A-SOM to the output layer with feed-fandl connections only,
i.e. the output layer received the activity of the A-SOM aguf) thus creating an
architecture suitable for classification.

The second architecture (Fig 2 b) is similar to the first onewviith recurrent
connections added. These recurrent connections feed tiv@yaof the A-SOM
back to the A-SOM itself as ancillary input with a time deldyone iteration. This
yields an architecture able to produce proper sequencegiitactivity even when
the A-SOM stops receiving input.

The third architecture (Fig 2 c) is similar to the second bithwhe recurrent
connections in the second architecture replaced by retucoanections that feed
the activity of the output layer back to the A-SOM as ancjllarput with a time
delay of one iteration. As the second architecture this gislils an architecture
able to produce proper sequences of output activity evemline A-SOM stops
receiving input.

In the fourth architecture (Fig 2 d) the approaches of thersgand the third
architectures are combined, i.e. there are two sets of i@uuconnections. Thus
there are both a set of recurrent connections that feed thétypof the A-SOM
back to the A-SOM itself as ancillary input with a time deldyone iteration, and
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a set of recurrent connections that feed the activity of thtgput layer back to the
A-SOM as ancillary input with a time delay of one iteratiorisé this architecture
are suitable for the production of proper sequences of ¢aigtivity even when the
A-SOM stops receiving input.

3 Simulations

All four tested architectures used an A-SOM withxd %5 neurons as a hidden layer,
and an output layer consisting 0&110 neurons.

To test the architectures we constructed a set of 10 tragangples by random
selection, with uniform distribution, from a subsetf the planes= {(x,y) € R%;0 <
x<1,0<y< 1}. The selected points were then mapped to a sub$tloj adding
a third constant element of 0.5, yielding a training set oé¢hdimensional vectors.
The reason for this was that a Voronoi tessellation of thaglaas calculated from
the generated points to later aid in the determination of hew points in the plane
should be classified (the first architecture described gbdeemake this Voronoi

a) b)

Output layer

c) d)

(e]e]elelelel0l00l0]

Output layer

Fig. 2 The four tested neural network architectures. a) The A-S@Monnected to the output
layer with feed-forward connections only; b) The A-SOM isnected to the output layer with
feed-forward connections and to itself with recurrent amiions; c) The A-SOM is connected to
the output layer with feed-forward connections, and thewulayer is connected with recurrent
connections to the A-SOM; d) The A-SOM is connected to theuutayer with feed-forward
connections and to itself with recurrent connections. lditash the output layer is connected with
recurrent connections to the A-SOM.
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tessellation, which is based on the Euclidian metric, ugefuthis purpose with the
A-SOM in the hidden layer, which uses a metric based on dadymb the set of
points in the plane has to be mapped so that the correspopadsitipn vectors after
normalization are unique. One way to accomplish such a magppiby adding a
constant element to each vector. The result of this is thett @actor will have a
unique angle irR%. We chose the value 0.5 for the constant elements to maximize
the variance of the angles R¥.

All architectures were trained during 20000 iterations, during 2000 epochs
when receiving the sequence of 10 training samples. Thenaafexponent for the
A-SOMs were set to 1000. The learning ratf) of the A-SOMs was initialized to
0.1 with a learning rate decay of 0.9999 (i.e. multiplicatad the learning rate with
0.9999 in each iteration), which means the minimum learnittg, set to 0.01, will
be reached at the end of the 20000 training iterations. Thghheurhood radius,
i.e. o of the neighbourhood functioc(t) in eq. (6), was initialized to 15 for both
A-SOMs and shrunk to 1 during the 20000 training iteratiopsising a neighbour-
hood decay of 0.9998 (i.e. multiplication of the neighbaeoti radius with 0.9998
in each iteration). The A-SOMs used plane topology whenutalimg the neigh-
bourhood. The learning rafefor the associative weights in all A-SOMs as well as
for the neurons in the output layer for all architectures s&tgo 0.35.

Since these architectures are supervised each traininglsamas associated
with a desired activity provided to the output layer duridg ttraining phase.
The set of desired activitieB consisted of 10-dimensional vectors, where one
element in each was set to 1 and the other elements were seti®. O =
{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)}. This means that after training each sam-
ple of the training set should elicit the highest activatiom unique neuron if the
trained architecture is able to distinguish between thepéesrin the training set.
Moreover, if the trained architecture receives a new sarfthle was tested in the
case of the first architecture described above), not indui¢he training set, this
should elicit activity in the same output neuron as the dbsample in the train-
ing set. In other words: a new sample located in a certainnrecell of the input
space should elicit the highest activity in the same neusdhatraining sample cor-
responding to that particular Voronoi cell. If this is true fa sufficient ratio of the
new samples, then the generalization ability of the archite should be considered
good.

After the training phase the first architecture describexvatvas tested with the
training samples and with an additional set of 10 new sangdasrated in the same
way as the training set.

The other three architectures were tested to evaluate dbdity to produce
proper sequences of activities in their output layers evieanithe A-SOMs stopped
receiving input. Thus we only used the training sets in thawation, and the se-
quences of activities were considered proper if the sameeseg of neurons in the
output layer had the highest activity as when the architestteceived input. Thus
these architectures were tested, after the training phgstyst feeding them the
sequence of the 10 training samples once. Then the arahiésaid not receive any
more input and we recorded the activity for the following 9&0ations (see Fig 3
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B, C and D) to see if the architectures were able to reproduesame sequence
of 10 output activities over and over again. Thus we recotbegercentage of the
iterations in each epoch (i.e. an epoch was 10 iteratiorte shre training sequence
was the 10 samples in the training set) with proper activitgrahe architecture
ceased to receive any input.

3.1 Feed-Forward Architecture for Classification

Fig 2 A shows a schematic depiction of the architecture. Taiaing set was used
for all four architectures. The simulation results with fivst architecture are de-
picted in Fig 3 A. As can be seen in this figure, all samplesértithining set elicited
the highest activity in the proper neuron, i.e. 100% cotrect

In Fig 3 A we can also see that 8 of the 10 new samples elicitglosit activity
in the proper neuron of the output layer. Sample 3 in the nemp$a set should
have been classified as belonging to the Voronoi cell for $a® pf the training set,
but was misclassified as belonging to the Voronoi cell forglani in the training
set. Sample 7 in the new sample set should have been classifleglonging to the
Voronoi cell for sample 7 of the training set, but was missifisd as belonging to
the Voronoi cell for sample 4 in the training set.

It is worth noting that sample 10 in the new sample set liekebbrder between
the Voronoi cells for training samples 4 and 7. This sampls elassified as be-
longing to the Voronoi cell for training sample 7, but it wdwlso be considered
correctly classified if it would have been classified as bgilog to the Voronoi cell
for training sample 4. An interesting observation was thlaemwreceiving this new
sample the activity of the neuron in the output layer thatesents the Voronoi cell
for training sample 7 was the most activated neuron in thewuayer, and the
neuron that represents the Voronoi cell for training sarpleas the second most
activated neuron in the output layer.

3.2 Architecture with Recurrent A-SOM Connections

The simulation results with the second architecture aréctipin Fig 3 B. In this
figure we can see that this architecture was able to repratheceequence of the
training samples with 100% correctness in the first 28 epf@hgor 280 iterations),
with 90% correctness until epoch 42, and then there was aigtraecline until it
reached a level of 20% correct activities at epoch 76. THisgts the performance
level at epoch 95.



Supervised Architectures for Internal Simulation of Pptimns and Actions 9

3.3 Architecture with Recurrent Connections from the Outpu
Layer to the A-SOM

The simulation results with the third architecture are digal in Fig 3 C. In this
figure we can see that this architecture was able to repratheceequence of the
training samples with 100% correctness in the first 3 epaodasfér 30 iterations),
then there was a rapid decline until a level of 0% correcviies were reached at
epoch 14. This level of 0% correct activities continuedlegbch 71 when it started
to improve again. It reached a new peak of 50% correct aetiviietween epochs
79 and 86. After that there was a decline again and the lev@oéorrect activities
was reached again at epoch 95.

% correct
g
3 comsct

Training Set New Set

0 10 20 a0 40 50 @ o @ @
spacte.

T archiccture 3 —a— i ' ' ' i ' " Arcfiteclue 4 —a—

% et
% cormet

o 0 20 B a0 E @ ™ @ @ o 0 Ei ES Fi 50 @ ) E @
spochs epochs,

Fig. 3 The simulation results. A) The results with the Feed-Fodnarchitecture for Classifica-
tion. 100% of the training samples and 80% of the test sampéze recognised; B) The results
with the Architecture with Recurrent A-SOM Connectionstekfceasing to receive any input this
architecture was able to continue to produce 100% corregtesees of output for 28 epochs, and
then continue with 90% correct sequences until epoch 42h€y@&sults with the Architecture with
Recurrent Connections from the Output Layer to the A-SOMer&twas 100% correct reproduc-
tion of the output sequence in the first 3 epochs after cedsingceive any input; D) The results
with the Architecture with Recurrent A-SOM Connections decurrent Connections from the
Output Layer to the A-SOM. There was 100% correct reproduactif the output sequence in the
first 8 epochs after ceasing to receive any input.
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3.4 Architecture with Recurrent A-SOM Connections and
Recurrent Connections from the Output Layer to the A-SOM

The simulation results with the fourth architecture areicteg in Fig 3 D. In this

figure we can see that this architecture was able to repratheceequence of the
training samples with 100% correctness in the first 8 epaoiasfér 80 iterations),

then there was a rapid decline until a level of 0% correcivdieds were reached
at epoch 13. This level of 0% correct activities continuetllw@poch 63 when it

started to improve again. It reached a new peak of 90% coaictittities between

epochs 67 and 69. After that there was a decline again an@évkedf 0% correct

activities was reached again at epoch 81. This level of 0%ecbactivities was still

the performance level at epoch 95.

4 Discussion

We have implemented and tested four supervised A-SOM basbdextures. The
first architecture was a Feed-Forward Architecture for §ifecsition and it was able
to correctly classify 100% of the training samples as we8@% of a new set of test
samples. The three other architectures used recurreneéctions to enable internal
simulation of perceptions and actions.

The second architecture used recurrent connections tobfeeldthe activity of
the A-SOM to itself as ancillary activity with a time delay ofe iteration. After
ceasing to receive any input this architecture was ablentiruge to produce 100%
correct sequences of output for 28 epochs, and then contiithi®0% correct se-
guences until epoch 42.

The third architecture used recurrent connections to fee# the activity of the
output layer to the A-SOM as ancillary input with a time detdyne iteration. This
architecture was able to continue to produce 100% corregetesees of output for
3 epochs after ceasing to receive any input.

The fourth architecture used two sets of recurrent conoiestiOne set of re-
current connections were used to feed back the activity @8O0M to itself as
ancillary activity with a time delay of one iteration. Théhet set of recurrent con-
nections were used to feed back the activity of the outpgrléy the A-SOM as
ancillary input, also with a time delay of one iteration. 3hrchitecture was able to
continue to produce 100% correct sequences of output foo8hepafter ceasing to
receive any input.

When comparing the three architectures with recurrentections, the architec-
ture with recurrent connections that feed back the actvfithe A-SOM to itself is
clearly the best. This is because it is able to continue witiper output sequences
much longer than the other recurrent architectures in teerade of input.

That the correctness of the output sequences decline withiti the three archi-
tectures with recurrent connections is reasonable anditoisably due to that the
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present activity elicit similar (but not exactly the samejiaty in the succeeding
iteration, which over time should lead to an increased dievigrom the correct
activity.

A reasonable guess to why the architecture with recurremections that feed
back the activity of the A-SOM to itself is better than theharecture with recurrent
connections from the output layer to the A-SOM is as follol/should be possible
to keep more information when associating the activity mAASOM with the ac-
tivity of the A-SOM in the previous iteration than when adstiag the activity of
the A-SOM with the activity of the output layer in the prev®iteration. The rea-
son is dimensionality, i.e. the number of connections ismacger in the former
case than in the latter because the A-SOM in our simulationtains 225 neurons
whereas the output layer contains only 10.

The reason that there is a second peak in the two architecivitie recurrent
connections from the output layer to the A-SOM is probabtyikir. There is a
higher probability that the activity pattern in the 10 outpaurons starts to become
proper again after some time than that the activity patterthé 225 neurons in
the A-SOM happens to become proper. However, we have no lomat svhy the
second peak comes earlier, reaches a higher level and ismaomv in the fourth
architecture than the second peak in the third architecture

A somewhat surprising result was that the fourth architegtue. the one with
recurrent connections from the output layer to the A-SOM al &s recurrent con-
nections from the A-SOM to the A-SOM is not better than theogelcarchitecture,
i.e. the one with recurrent connections from the A-SOM telftdVe had expected
it to be because it should be able to keep more informatiarbdly this is due to
the way the total activity is calculated in the A-SOM, i.e.deraging the ancillary
activities and the main activity. This means that the aagilinput from the output
layer will have as much influence on the total activity of th&®M as the ancillary
activity with the time delayed A-SOM activity. Thus a perftaince somewhere in
between the performance of the architecture with recurentections from the
A-SOM and the performance of the architecture with recurcemnections from
the output layer to the A-SOM would be expected. This is alkatwe got in the
simulations.

One idea for further development of the presented architestis to use several
sets of recurrent connections with different time delaygrprove the ability to
continue with proper output sequences in the absence of.ime drawback with
this approach is of course the increased computationakeburtihus it will be a
matter of weighting the improved ability to continue wittoper output sequences
against the additional computational burden.

Another idea is that it is conceivable to develop a varianthef A-SOM based
on the Growing Cell Structure [4] or the Growing Grid [5]. Ihig way it might
be possible to create an architecture that automaticadlgtes a suitable number
of neurons with a suitable topology. This would yield a dbigasize of the hidden
layer to represent the clusters in the particular inputepac
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