
Ikaros: Building Cognitive Models for Robots

Christian Balkenius, Jan Morén, Birger Johansson and Magnus Johnsson

Abstract— The Ikaros project started in 2001 with the aim
of developing an open infrastructure for system-level brain
modeling. The system has developed into a general tool for
cognitive modeling as well as robot control. Here we describe
the main parts of the Ikaros system and how it has been used to
implement various cognitive systems and to control a number
of different robots ranging from robot arms and hands to active
vision systems and mobile robots.

I. INTRODUCTION

The goal of the Ikaros project is to develop an open in-
frastructure for system level modelling of the brain including
databases of experimental data, computational models and
functional brain data. The infrastructure supports a seamless
transition from a pure modelling and simulation set-up to
real-time control systems for robots running on one or several
computers in a single or multiple threads. Computational
models are built by connecting individual modules that
implement a specific brain model or algorithm into larger
systems.

The system makes heavy use of the emerging standards
for Internet based information such as XML and makes all
part of the system accessible through an open web-based
interface. We believe that this project has the potential to
radically change the way system level modeling of the brain
is performed in the future by defining standard benchmarks
for brain models and substantially increase the gain from
cooperative research between groups.

A system like Ikaros can not operate in a vaccuum.
Instead, the goal is to allow Ikaros to easily work with as
many external sources of information as possible. There is
simply too many types of information that need to be used by
the system and without taking an inclusive approach, the task
of adapting information and models becomes too great. The
only viable solution is to integrate Ikaros with other similar
endeavors whenever possible. This inclusive approach means
that we want to offer a large corpus of experimental data
from cognitive experiments for use with Ikaros, but we also
strive to make it easy to adapt other experimental data for
use within the system.

Inclusivness also means making development a transparent
and straightforward process. As part of the standard infras-
tructure, Ikaros already contains a sizable number of standard
modules that are useful in a broad range of cognitive models.
The infrastructure also contain modules that allow for an

C. Balkenius, B. Johansson and M. Johnsson are with Lund Univeristy
Cognitive Science, Kungshuset, Lundagård, SE-222 22 Lund, Sweden.
christian.balkenius@lucs.lu.se

Jan Morén is with Knowledge Creating Communication Research Center,
NICT, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
jan.moren@gmail.com

easy interface with various types of hardware such as video
cameras and robots. For example, there are easy interfaces
to the various standards for video capture and video files, for
audio processing as well as for robot control through a set
of drivers for different hardware systems.

The goal of the infrastructure specification is to be mini-
mally demanding for anyone developing an Ikaros module.
It should be possible to learn to use it in a few minutes
while still providing support for very complex architectures.
In the following sections we describe the different parts of
the Ikaros system and the choices that have been made when
designing the different components.

II. SYSTEM-LEVEL MODELS

The core concept of system-level modeling is the module
which corresponds to a part of a model. A module can have
a number of inputs and outputs and encapsulates a particular
algorithm (Fig. 1). This does not mean that cognitive models
built using Ikaros must adhere to a modular view of cogni-
tion. Instead, a system-level approach to cognitive modeling
acknowledges that different cognitive components interact in
many ways and it is one of the strengths of the approach that
it explicitly shows these interactions as connections between
modules. A module in Ikaros is thus not a statement about
locality or impenetrability, it is only an acknowledgement
that a system is constructed from several components, and
these components or modules have different properties.

In general, to design a system-level model it is necessary
to answer four questions:

What are the components of the system?This entails
answering at what level the model should be described.
Are the components individual neurons or brain regions,
or are they some form of abstract description of functional
components without direct relation to the brain? There is no
single correct answer to these questions; it depends on the
model being implemented.

What are the relations between the components?Are
they parallel systems with little interaction, or are they
tightly coupled? Are they all at the same descriptive level
or are some components subparts of others? Is the system
heterogeneous or hierarchical?

Which function is performed by each component?How
can the functions be described as mathematical functions or
as algorithms? Ikaros supports systems built from standard
modules that implement elementary mathematical functions
as well as modules that are hand coded from scratch.

What information is transmitted between the components
and how is it coded?The question of coding is the most
important for a system-level model and the only one where



Module
Input Output

FIG. 1: A module with one input and one output.

A
a b c d

fe

g h
C

B

FIG. 2: A small system with three modules A, B, C with connections
between them.

Ikaros puts any major constraints on the possible models. In
Ikaros, all inputs and outputs are coded as matrices of floats.
This limits the possible models in several ways that make
it more likely that different models can be interconnected.
Although Ikaros puts no constraints on the interpretation of
the matrices, this type of structure is best used for coding
in terms of numerical values, either directly or using some
form of distributed code.

In Ikaros, the components are specified using an XML-
based language which also describes the relation between the
components. The function in each component is described
either using standard modules or by writing new simulation
code. The transfer of information between components is
implicit in the coding of the different modules.

III. DESCRIBING MODELS

Fig. 1 shows a simple module. This module has a single
input through which it receives input data and a single output
through which it sends its output data. The input is read in
discrete time and the module also generates new output at
discrete intervals.

Modules can be connected together to form systems
(Fig. 2). This network of modules is what makes up a model
in Ikaros. Here, the model consists of three modules A, B
and C. Module A has one input (a) and two outputs (b and
e). Module B has two inputs (c and f) and a single output
(d). Finally, module C has one input (g) and one output (h).
The complete model has the single input a and the single
output d.

One of the greatest strengths of Ikaros is its ability to han-
dle large complicated cognitive models consisting of many
interacting subcomponents. To allow the specification of such
architectures, an XML-based description language has been
developed [6]. This language has three main components:
the module, the group and the connection.

A module element describes an instance of a particular
Ikaros module and sets its parameters. These parameters
are handled to the constructor function of the module as
described below. The only two required attributes areclass
and namethat decides what code the module will run and
how it will be referred.

<module
class = "MyClass"
name = "MyModule"
alpha = "3"
beta = "0.1"

/>

A connection between two modules is specified in a
connection element:

<connection
sourcemodule = "Thalamus"
source = "Output"
targetmodule = "Amygdala"
target = "Input"

/>

Finally, it is possible to group modules and connection in
to larger structures. The following example corresponds to
the structure shown in Fig. 3 and Fig. 4. It defines a group
(or new module) called X with an input x and an output y.
The group consists of three modules A, B and C which have
multiple connections between them. The input x is connected
to the input a of module A and the output y receives data
from output d of module B.

Groups can also be given inputs and outputs to let them
function as new modules or be read from external files and
be used as call descriptions. A specification of these features
is however beyond the current description.

IV. THE SIMULATION SYSTEM

Currently, the main part of Ikaros is the simulation system
which consists of a platform independent simulation kernel
together with a large set of modules that implements different
functions and models.

A. Design Criteria

There were a number of important considerations in the
choice of the simulation structure. The first was that it should
be platform independent. There are two reasons for this. The
first is that it was expected that the system would be required
to run on different architectures. The second, and more
important reason was that the we did not want to depend
on one particular compiler or operating system. It is well
known that code is only portable once it has been ported. By
simultaneously developing for several operating systems,it
would be almost guaranteed that Ikaros would be reasonably
portable. We have consequently strived to comply with the
relevant standards as much as possible. These includes ANSI
C++, POSIX and BSD sockets. A related choice was to
depend on as few external libraries as possible. Although the
current version of Ikaros uses external libraries for sockets,
timing, threads and mathematical operations, it can still be
run in a minimal version that only uses a small set of standard
C++ libraries.

The second main design choice was to use a discrete-time
model for simulation. Although this is the normal operation
for most neural network simulators, there are some notable
exception. However, to allow the easy integration of different



A
ax b c d y

fe

g h
C

B

X

FIG. 3: A group consisting of three modules. The group is externallyconsidered as a module named X with one input x and one output
y. These inputs and outputs are internally connected to input a of module A and output d of module B.

<group name = "X">
<input name = "x" targetmodule = "A" target = "a" />
<output name = "y" sourcemodule = "B" target = "d" />
<module name="A" ... />
<module name="B" ... />
<module name="C" ... />
<connection sourcemodule= "A" source = "b" targetmodule = "B" target= "c" />
<connection sourcemodule= "A" source = "e" targetmodule = "C" target= "g"/>
<connection sourcemodule= "C" source = "h" targetmodule = "B" target= "f" />

</group>

FIG. 4: Example of a group of modules with its own input and output. The graphical representation of this system is shown in Fig. 3

types of algorithms, it was decided that a discrete time
simulator would be most useful. It is hard to imagine how
many algorithms could be adapted to a continuous time
framework. In most cases, this choice does not limit the
possible models that can be designed since it only relates
to the times when different modules communicate and not
their internal structure.

Another consideration was that to make the system attrac-
tive it should be as easy as possible to use many different
types of programming styles. As a consequence, we decided
to only use standard C data structures such as integers and
matrices of floats. The use of doubles was decided against
on grounds of efficiency and the lack of support for doubles
in most vector co-processors.

B. Module Interface

All inputs and output of modules are represented as arrays
or matrices of floats and the sizes of these matrices are
represented by integers. The sizes of all data structures
used by Ikaros are calculated during startup and can not be
changed during execution. This restriction only applies for
the data moved between modules; for internal data used in
modules there are no restrictions at all. The actual code in a
module can use any coding style as long as the inputs and
outputs are in the right format - indeed, it is entirely feasible
to embed or interface with an interpreter in a module for
a completely different language transparent to Ikaros itself.
Since Ikaros itself is written in C++, either C like or C++
like coding styles can be used as long at it is wrapped in a
C++ class. Although the inputs and outputs are part of the
Ikaros kernel data structures, the modules themselves does
not know about this. Instead, they can magically assume that
the input matrices are always filled with the required data.

This design decision has made it easy to incorporate code
not specifically written for Ikaros as long as it is reasonably
clean. For example, the main function of a trivial module
that would only copy its input to its output may look like
this:

MyModule::Tick()
{

for(int i=0; i<size; i++)
output[i] = input[i];

}

The point here is that this code looks like any C++
code and there is nothing Ikaros specific with it. When this
function is called, the array input will contain the input tothe
module and after execution, Ikaros takes care of the result
in the array output.

It was also considered fundamental that simulations using
Ikaros would not be slower than simulations made in a
dedicated system. Conceptually, all modules in Ikaros run
concurrently and synchronously. This mode of operation was
selected because it is the only possibility when it is necessary
that execution order is well defined, which is the case for
many algorithms. Because of the synchronous operation,
there will be a delay of exactly one time step (or tick)
between the production of an output from a module and the
time when it can be used by another module. In most cases,
this extra copying step is necessary anyway and does not
usually incur any extra execution cost.

Since this overhead is not always desired however, version
0.8.0 introduced zero-delay connection between modules.
Using this type of connections, there is no delay at all
between the production of an output and its use by other
modules. Instead, the second module refers directly to the



memory where the first module has produced its output. To
make the result well defined, zero-delay connections are only
allowed within subsets of the complete module networks
that form directed acyclical graphs. That this condition is
fulfilled is checked during start-up when all modules are
sorted according to their position in the graph. With zero-
delay connections, the input to the system can in principle be
processed in a single time step regardless of the number of
modules that the information passes on its way to the output.
In this case, the execution overhead is negligible.

The kernel also includes a small set of libraries that hides
system specific code for sockets, timing, threads and serial
communication. In addition there are utility libraries for
memory management, XML processing and mathematical
functions. In most cases, the programmers need not know
about any of these libraries to use Ikaros.

C. Kernel Start-Up

The kernel is responsible for the creation of the network
and its modules at startup, the scheduling during system
execution, and the propagation of data between modules.
Fig. 5 shows the main component of the running Ikaros
system.

Detailed knowledge of the kernel operation is not at all
necessary or even recommended for use of Ikaros. Knowing
why and in what order things are started do however make it
easier to understand the design decisions made. This section
can be skimmed lightly without any loss of understanding.

The most important aspect of the kernel is the creation
sequence that occurs when the system starts up. This happens
in six steps:

a) Class Registration:When the Ikaros program starts,
it first registers all code for the modules contained in the
system. This initialization step builds a data structure that
contains pointers to a creator function for each module type
and binds it to a module class name.

b) Module Creation: When the initialization has fin-
ished, the kernel reads the supplied control file in XML-
format, which specifies the modules to activate and gives
them instance names and other parameters. One instance of
each module specified is created for every occurrence of that
module in the control file. A module can thus have multiple
instantiations with different parameters. When each module
is created, it registers its inputs and outputs in the kernelto
allow them to be connected in the next step. At this stage,
the individual modules also gain access to any additional
parameters set in the control file for that particular module.

c) Connections:When all modules have been created,
the kernel continues to read the control file and make the
specified connections between modules.

d) Size Calculations:Most input and outputs have
dynamical sizes that are set during start-up. For example, if
the input of a module is connected to the output of another
module that produces a 4x4 matrix, the input of the second
module will adapt to this and set the size of its outputs
accordingly. There can be any relation between the size of
an input and the size of an output.

2
1

02

0

1

FIG. 6: The order of execution of three modules. The numbers on
the connections indicate the delay in the connections. The numbers
on the modules indicate the order in which they should be executed.
The two shaded areas correspond to two thread groups.

For example, the output from the module could be set to
have the double size of the input or some other more complex
relation. Since there can be a number of cyclical relations
between different modules, the calculation of output sizesis
performed iteratively until all sizes have been established. If
there are cyclical dependencies, these will be found during
this stage and an error message will be produced.

e) Sorting the Modules:All modules are sorted in two
ways (Fig. 6). The modules are partitioned into different
sets that each contains a directed acyclical graphs (DAG) of
modules with zero-delay connections between them and only
delayed connections to any other modules. Each of these sets
can be run in a separate thread and is called a thread group. A
topological sort is performed on the groups according to their
positions in the DAG which defines a partial order relation on
the modules. For modules that have zero-delay connections
between them, this order is used to make sure that a module
that produces data that another module will use is always
executed before that other module.

f) Module Initialization: When all modules have been
connected, the initialization phase starts. At this stage,the
size of the input that each module will receive is known and
each module is allowed to create any additional storage that
it needs and initialize variables. To do this, the kernel calls
an initialization function for each of the created modules.

D. Kernel Operation

The scheduling mechanism of the Ikaros kernel is re-
sponsible for calling the code of each module instance once
during each discrete time step (or tick).

In the simplest case, the scheduling consists of calling the
tick function for each module in the order in which they were
sorted during initialization. When Ikaros runs in threaded
mode, each thread group is handled separately in this way. In
threaded mode, there is no communication between modules
in different DAGs during this time which greatly simplifies
the operation of the kernel.

In a second step, the data propagation function is called
to copy data from outputs to the inputs of the modules.
Data propagation is done simultaneously for all modules.
The output for each module is copied to the input to which
it is connected. The propagation process is also responsible
for the simple data translation that is made by the system and



WebUI

Kernel

Process 1

Thread 1

Thread 2

Process 2

Kernel
TCP/IP

TCP/IP
XHTML

SVG

JavaScript

JSON

Data

Web

Browser

A

B

C
D E

F

G

FIG. 5:The Ikaros kernel. The kernel starts a number of threads where a number of modules (A-G) are executed. The modules communicates
through a set of circular buffers that correspond to outputsfrom the modules. The kernel can also communicate with otherIkaros processes
running on the same or on a different processor or computer. In addition, the kernel communicates with an optional graphical user interface
client running in a web browser.

concatenation in the case when several outputs are connected
to the same input. In addition, this stage delays the data on
connections when this is set in the connection.

Finally, the kernel handles timing when Ikaros runs in
real-time mode. In this case, the kernel makes sure that the
execution of the tick did not take longer than allowed and
waits for the appropriate moment to start the next tick.

E. Anatomy of a Module

Every module in Ikaros implements five functions. For a
module named MyModule, the following functions are be
defined and called in the following order:

MyModule()The creator function registers all the inputs
and outputs of a module. It also gains access to all parameters
of this instance of the module from the control file.

SetSizes()This optional function is called repeatedly dur-
ing start-up to calculate the sizes of dynamic outputs based
on the sizes if the inputs to the module.

Init() The init function is called after kernel initialization
and lets the module gain access to its inputs and outputs.
This is also were any internal data structures are allocated.

Tick() The tick function is where the actual work is
being done by the module. It is called repeatedly during
the execution of a module and should calculate new outputs
based on its inputs (See example in section 3.1).
∼MyModule()This optional function deletes any module

specific memory that has been allocated in Init() and per-
forms other clean-up that may be necessary.

A template for new modules is available as part of Ikaros.
This template is named MyModule and a new module can
easily be added to Ikaros by simply renaming the template.

V. STANDARD MODULES

Ikaros contains a large number of standard modules. These
can be divided into a number of categories.

IO Modules:There is a set of modules that read data from
different file formats, for example text data or different media
files. Other modules are used to communicate with external
devices such as cameras or robots.

Utility Modules: To simplify the design of models, there
are also a large number of utility modules for simple
mathematical operations. This includes vector and matrix
operations and standard mathematical functions. Other utility
modules are used to collect data or statistics or to control an
experiment. A few utility modules are used to generate input
such as the function generator.

Image Processing Modules:Another set of modules im-
plement standard image processing functions. There are
modules to transform the colors in an image, modules that
scale images in different ways or performs other spatial
transforms. To apply different image processing operators
there is a module for convolution, but also modules for spe-
cific operators such as the Sobel operator and parametrically
defined Gabor filters. There are also several modules that
performs edge detection. A few vision modules are more
complex and implements a saliency map or an attention
focusing mechanism.

Environment Modules:To allow simulation of an agent
in an environment, there are a number of modules that
implements simple environments. The GridWorld module
implements a two-dimensional environment consisting of a
grid with obstacles together with an agent that can navigate
in it while being controlled by other Ikaros modules. There
is also a variant where the simulated robot can move con-
tinuously over the grid. This module also simulates a 2D
visual field using a ray casting algorithm. Another module
simulates an arm with arbitrary geometry.

Other Modules:The standard modules also include a
few neural network algorithms and some general learning



algorithms.

VI. REAL-TIME EXECUTION

When Ikaros is used to control robots it is necessary that
the precise timing of input and output can be controlled. To
accomplish this the kernel has functions to time the execution
of each tick. When Ikaros starts up it sets it time-base to the
required interval and tries to time the ticks to this time-base.
It internally controls that it is able to keep up with the desired
speed and will report delays in the execution.

Obviously, the accuracy of the timing will depend on the
underlying operating system. The real-time functionalityis
based on POSIX.4 [21], but since Ikaros is currently not run-
ning on real-time operating systems, any other process can
in principle interfere with real-time execution. In practice, it
is possible to get less than 1 ms resolution on the operating
systems we have tested.

An important factor that contributes to real-time perfor-
mance is the ability to run Ikaros in multi-threaded mode
[10]. In this mode, the kernel tries to run every module in
a separate thread. When there are zero-delay connections
between a set of modules, the kernel will automatically put
these in the same thread.

In thread mode, each module can be set to run at different
time intervals. For example, a slow visual processing module
may run 5 times per second while a faster motor control
module can be allowed to run 100 times per second. This
feature is very useful for robotic control where some loops
need to run at high speed while others are much heavier.

VII. A G RAPHICAL USER INTERFACE

To monitor ongoing simulations, Ikaros has a graphical
user interface. Like the modules and connections, this user
interface is specified using XML. This XML specification
is read by the Ikaros kernel which starts up an integrated
web-server which allows standard web browsers to act as
graphical clients. The browser gets a set of JavaScript rou-
tines from Ikaros that are run in the browser that implements
the graphical user interface [9]. The actual drawing is made
using SVG [8]. The choice of JavaScript+SVG was based
on the fact that this would make the system truly platform
independent.

For communication with the sever, the interface uses
JavaScript Object Notation (JSON). Although we initially
planned to use XML for this communication, JSON turned
out to be much simpler to use since it can be natively parsed
by JavaScript using the eval function.

Unfortunately, few browsers initially supported SVG and
we made the choice to only actively support FireFox. The
first version of Ikaros that used this graphical user interface
was released a few days before the first version of FireFox to
include native SVG rendering (version 1.5). Today, several
other browsers support SVG and JavaScript in the required
way including Safari and Opera.

Currently, Ikaros has support for graphical objects such
as bar graphs, different forms of 2D and 3D plots, images,
grids and vector fields. The graphical client can easily be

extended with new graphical objects by writing JavaScript
code for the drawing of the new object.

One limitation of this solution is that it is not as fast
as using a dedicated program for the client. However, we
felt that this solution has several advantages. First of all, it
means the whole system becomes totally platform indepen-
dent. But also, and perhaps more importantly, it enables us
to transparently monitor and control a running simulation
remotely, independent of what system the simulator and the
client is running, and we can do so with a simulation running
in another room or across two continents with no loss of
functionality.

If fast, concurrent representation is important, the very
open-ended structure of an Ikaros module enables users to
simply write a graphical module that includes the toolkit
or other representational system of their choice and display
data sent to the module from there. Likewise, a module that
receives user interaction can change the behavior of other
modules in the system accordingly by defining a ”command
channel” that sends data to other modules via the same
mechanism as ordinary data. Ikaros does not care how data
is interpreted within modules after all.

VIII. VALIDATING MODELS

To automatically validate a model against relevant data,
for example, neurobiological databases, the specificationof
a module can include themodelsattribute. For example, a
module that claims to model the amygdala could be describes
in the following way:

<module
class = "MyClass"
name = "MyModule"
models = "Amygdala"

/>

This information could be used to match the graph made
up of the modules in an Ikaros model to connectivity
data found in neurobiological databases. Some first attempts
towards such as system have been taken [11]. More recently,
we also interfaced the Ikaros validation system with the
CoCoMac database.

IX. EXPERIMENT DATABASE

In our earlier studies of classical conditioning we have
developed an extensive database of the design and results of
conditioning experiments. The development of this database
started in 1996 and now contains approximately 200 different
experiments. The database is stored in a way that allows the
experimental descriptions to be used as input to computer
simulations of learning by classical conditioning.

Unfortunately, this database was stored in a form that is
not easy to access unless the previous simulator developed
at LUCS is used. It also has the limitation that it only covers
classical conditioning and not other learning paradigms. As a
part of the Ikaros project, we want to extend the experiment
database by adding more experiment types and by translating
the database to a more accessible format.



In the future, we will add experiment description for
other learning paradigms besides classical conditioning.This
includes operant conditioning experiment as well as more
cognitively oriented experiments. The goal is to cover all
experiment types that are regularly used with animals and
humans. We estimate that the final database will include
approximately 1000 experiments.

The entry for each experiment will include all information
that is necessary to reproduce the experimental conditionsin
a simulator or a real experiment. This includes detailed data
of the stimuli used, the apparatus, the exact timing etc. It will
be important to differentiate between the part of the exper-
iment description that contains the logic of the experiment
and features such as timing and spatial location that are often
not essential. This will allow modelers to adapt experiments
to their needs in much the same way that an experiment
developed for one species has to be changed to fit another.
The database will also contain experiment descriptions in
narrative form and pointers to external databases such as
Medline and BIOSIS when appropriate.

To allow easy access to the experiment database, it will
be coded in the XML format that is widely used for on-
line data. The choice of XML for the database is natural
since it allows for an evolving and continually expanding
database structure. It can also be used to mediate the transfer
of information from other already existing databases. Apart
from translating the already existing database to this format,
we will also develop tools that can be used to encode and
visualize experiments through a web-based interface.

X. DISCUSSION

During the last few years, Ikaros has been used to build
a number of cognitive models and to control many different
robots. This has to date resulted in over 40 scientific pub-
lications. For example, for cognitive modeling, it has been
used in several models of cognitive development and the
modeling developmental disorders [3], [7], plasticity in the
somatosensory cortex [14] and to study different forms of
learning [5] and emotion [20], [4]. A lot of the work on
Ikaros has involved visual processing, for example models of
visual contour processing [19] and models of visual attention
[1], [2].

We have used Ikaros to control a number of different
robotic hands built at Lund University Cognitive Science
to investigate haptic perception [15], [16], [17], [18]. The
hands have different sensors and different degrees of freedom
and are all controlled by different neural network based
architectures. In another line of research, we have looked
at anticipation and navigation in mobile robots including the
e-puck and the BoeBot [12], [13]. Here, Ikaros is used to im-
plement very different models that are more classical in the
sense that they use potential fields or planning approaches.

The approach in Ikaros to be minimally demanding re-
garding the types of architectures that can be built and the
types of programming styles that can be used has proved to
be very successful. It is also clear that many of the design
choices made initially were sound and has contributed to

the usefulness of the system. Unlike most other frameworks,
Ikaros do not force the user into one theoretical model or into
using extensive libraries even though such support is offered.
This has made it easy for users of diverse backgrounds to
quickly learn to use the system.

On the other hand, there are certain restrictions that limits
for what systems Ikaros is useful. Some of these constraints
certainly makes Ikaros less useful for some systems, in
particular architectures that mainly relies on symbolic pro-
cessing rather than numerical computation. We believe that
for a tool to be useful, it is necessary that it is adapted for
specific tasks and this inevitably makes it less useful for other
tasks. For Ikaros, it was important that it could be used for
real-time processing and for robot control, which makes it
different from many other framework for more biologically
based modeling. We also wanted Ikaros to run on almost
any hardware which is the reason behind many of the design
choices.

In summary, Ikaros has proven to be a very useful tool for
building cognitive systems models and for robot control. It
has evolved into a mature and stable system and has currently
been adopted by several research groups within the cognitive
sciences.

XI. ACKNOWLEDGEMENTS

We would like to thank all the people that have tested
and commented on the system during its development, in
particular Takashi Omori, Håkan Jonson, Kolbjörn Gripne,
Lars Kopp, Chris Prince, Martin Butz, Stefan Karlsson,
Stefan Winberg, Anders Karlström, Mikael Asker, Vin
Thorsteinsdottir, Sigurbirna Haflidadottir, Kiril Kiryazov, Gi-
anguglielmo Calvi. More information about Ikaros can be
found at the project web site: http://www.ikaros-project.org.

REFERENCES

[1] C. Balkenius. Cognitive processes in contextual cueing. In F. Schmal-
hofer, R. M. Young, and G. Katz, editors,Proceedings of the European
Cognitive Science Conference 2003, pages 43–47. Lawrence Erlbaum
Associates, Mahwah, NJ, 2003.

[2] C. Balkenius, K. Åström, and A. P. Eriksson. Learning in visual
attention. In ICPR ’04 workshop on learning for adaptable visual
systems (LAVS). 2004.

[3] C. Balkenius and P. Björne. Toward a robot model of attention-deficit
hyperactivity disorder (adhd). In C. Balkenius, J. Zlatev,H. Kozima,
K. Dautenhahn, and C. Breazeal, editors,Proceedings of the First
International Workshop on Epigenetic Robotics: Modeling Cognitive
Development in Robotic Systems, volume 85 of Lund University
Cognitive Studies. 2001.

[4] C. Balkenius and J. Morén. Emotional learning: A computational
model of the amygdala.Cybernetics and Systems, 32(6):611–636,
2000.

[5] C. Balkenius and S. Winberg. Cognitive modeling with context
sensitive reinforcement learning. InProceedings of AILS ’04. Dept.
of Computer Science, Lund, 2004.

[6] Christian Balkenius, Birger Johansson, and Jan Moren.Ikaros
Control File Specification. http://www.ikaros-project.org/2007/IKC10-
20070601/, 2007.

[7] P. Björne and C. Balkenius. A model of attentional impairments in
autism: First steps toward a computational theory.Cognitive Systems
Research, 6(3):193–204, 2005.

[8] J. David Eisenberg.SVG Essentials. O’Reilly, 2002.
[9] David Flanagan. JavaScript: the definitive guide. O’Reilly, fourth

edition, 2002.



[10] Bill O. Gallmeister. POSIX.4—programming for the real world.
O’Reilly, 1995.

[11] M. Gustafsson and C. Balkenius. Using semantic web techniques
for validation of cognitive models against neuroscientificdata. In
Proceedings of AILS ’04. Dept. of Computer Science, Lund, 2004.

[12] B. Johansson. Elastic template matching in outdoor environments.
Master’s thesis, Lund Univeristy Cognitive Science, Lund,2004.

[13] B. Johansson and C. Balkenius. An experimental study ofanticipation
in simple robot navigation. In M. et al Butz, editor,Anticipatory
Behavior in Adaptive Learning Systems: From Brains to Individual
and Social Behavior. Springer, 2007.

[14] M. Johnsson. Cortical plasticity: A model of somatosensory cortex.
Master’s thesis, Lund Univeristy Cognitive Science, 2004.

[15] M. Johnsson and C. Balkenius. Experiments with artificial haptic
perception in a robotic hand.Journal of Intelligent and Fuzzy Systems,

17(4):377–385, 2006.
[16] M. Johnsson and C. Balkenius. LUCS haptic hand II. Technical

Report 9, LUCS Minor, 2006.
[17] M. Johnsson and C. Balkenius. Neural network models of haptic shape

perception.Robotics and Autonomous System, 22:720–727, 2007.
[18] M. Johnsson and C. Balkenius. Associating som representations of

haptic submodalities. InProceedings of TAROS 2008. Edinburgh, UK,
2008.

[19] Stefan Karlsson. Monocular depth from occluding edges. Master’s
thesis, Department of Mathematics, Lund Institute of Technology,
2004.

[20] J. Morén. Emotion and Learning - A Computational Model of the
Amygdala. Lund University Cognitive Studies, 2002.

[21] Bradford Nichols, Bick Buttlar, and Jackie Proulx Farrell. Pthreads
Programming. O’Reilly, 1996.


