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Abstract—We have experimented with different neural net-  (FFT). Edwards et al [5] have used a vinyl record player with
work based architectures for bio-inspired self-organizirg tex-  the needle replaced with an artificial finger with an embedded
ture and hardness perception systems. To this end we have microphone to quantify textural features by using a group of

developed a microphone based texture sensor and a hardness : f .
sensor that measures the compression of the material at a manufactured discs with different textural patterns. Casnp

constant pressure. We have implemented and successfullysted ~ and Bajcsy [4] have explored haptic Exploratory Procedures
both monomodal systems for texture and hardness perception (EPs) based on human haptic EPs proposed by Lederman
and multimodal systems that merge texture and hardness data gnd Klatzky, among them an EP for hardness exploration in
into one representation. All systems were trained and teste \nich the applied force is measured for a given displacement
with multiple samples gained from the exploration of a set of4 o - h haoti tion h ted
soft and 4 hard objects of different materials. The monomodh | ur preylous re;earc on "f‘p IC percepuon has resy e
texture System was good at mapp|ng individual Objects in n the dESIgn and |mp|ementat|0n Of a number Of versions
a sensible way, the hardness systems was good at mappingof three different working haptic systems. The first system
individu.al objects and in adgition dividing .the objects into [7] was a system for haptic size perception. It used a simple
categories of hard and soft objects. The multimodal system as three-fingered robot hand, the LUCS Haptic Hand 1, with the

successful in merging the two modalities into a representain .
that performed at least as good as the best recognizer of thumb as the only movable part. The LUCS Haptic Hand

individual objects, i.e. the texture system, and at the saméme | was equipped with 9 piezo electric tactile sensors. This

categorizing the objects into hard and soft. system used Self-Organizing Maps (SOMs) [11] and a neural
network with leaky integrators. A SOM is a self-organizing

|. INTRODUCTION neural network that finds a low-dimensional discretized and

Two important submodalities in haptic perception ardopology preserving representation of the input space. The
texture and hardness perception. In non-interactive tasks System successfully learned to categorize a test set ofesphe
estimation of properties like the size and the shape of @d cubes according to size.
external object is often to a large extent based on vision The second system [8] was a system for haptic shape
only and haptic perception will only be employed wherperception and used a three-fingered 8 d.o.f. robot hand, the
visual information about the object is not reliable. Thighti LUCS Haptic Hand II, equipped with a wrist for horizontal
happen for example at bad lighting conditions or when theotation and a mechanism for vertical re-positioning. This
object is more or less occluded. Haptic submodalities likEobot hand was equipped with 45 piezo electric tactile
texture and hardness perception are different in this mspeSensors. This system used active explorations of the abject
These submodalities are especially important because thay several grasps with the robot hand to gather tactile
provide information about the outer world that is unavdgab information, which together with the positioning commands
for all the other perception channels. to the actuators (thus a kind of pseudoproprioception) were

There have been some previous studies of texture affPSS-coded by, depending on the version, either tensor
hardness in robotics. For example Hosoda et al [6] hayyoduct (outer p.roduct) operations or a novel neural ndtywor
built an anthropomorphic fingertip with distributed recat the Tensor Multiple Peak SOM (T-MPSOM) [8]. The cross-
consisting of two silicon rubber layers of different hargse Ccoded information was categorized by a SOM. The system
The silicon rubber layers contain two different sensorsjist successfully learned to discriminate between differeapsis
gauges and polyvinylidene fluoride films, which yield signal @ Well as between different objects within a shape category
that in a test enabled the discrimination of five differentvhen tested with a set of spheres, blocks and cylinders.
materials pushed and rubbed by the fingertip. Mayol-Cuevas The third system [9] was a bio-inspired self-organizing
et al [13] describes a system for tactile texture recognjtio System for haptic shape and size perception based solely
which employs a sensing pen with a microphone that is maf Proprioceptive data from a 12 d.o.f. anthropomorphic
ually rubbed over the explored materials. The system us&Pot hand with proprioceptive sensors [10]. The system was
a supervised Learning Vector Quantization (LVQ) classifiefained with 10 different objects of different sizes fromotw
system to identify with 93% accuracy 18 common materialdifferent shape categories and tested with both the trginin

able to discriminate the shape as well as the size of the
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these submodalities. All models employ a microphone based
texture sensor and/or a hardness sensor that measures tt
compression of the material at a constant pressure.

II. SENSORS IN THE EXPERIMENTS

All models discussed in this paper employ at least one of
two sensors (Fig. 1) developed at Lund University Cognitive
Science (LUCS). One of these sensors is a texture senso
and the other is a hardness sensor.

The texture sensor consists of a capacitor microphone with
a tiny metal edge mounted at the end of a moveable lever,C
which in turn is mounted on an RC servo. When exploring
a material the lever is turned by the RC servo, which moves
the microphone with the attached metal edge along a curvec
path in the horizontal plane. This makes the metal edge
slide over the explored material, which creates vibrations b
the metal edge with frequencies that depend on the textural
properties of the material. The vibrations are transfetced
the microphone since there is contact between it and the . . .

. Lo ig. 1. The texture and hardness sensors while exploring@epf foam
metal edge. The S|gnals are then sampled and dlgltallzed ber. The texture sensor consists of a capacitor micropt{a) with a
a NiDaqg 6008 (National Instruments) and then conveyed toetal edge (b) mounted at the end of a moveable lever (c),hwihigurn

a computer via an USB-port The EFT is then applied tés mounted on a RC servo. The hardness sensor consists ofka(d}i
: ounted on a RC servo. The servo belonging to the hardnessrsaantains

the mput., thus yleld|ng a spectrogram of 2049 COmponea}variable resistor that provides a measure of the turnintpefervo, and
frequenmes. thus the displacement of the stick, which is proportionaht® compression

The hardness sensor consists of a stick mounted OﬂOféhe explored material. The actuators are controlled B&&-32 controller
oard (Lynxmotion Inc.). The measure of the resistance ef \hriable

RC servo. During the exploration of a material the Réjesistor in the RC servo for the hardness sensor and thephione signal of
servo tries to move to a certain position, which causes the texture sensor are digitalized using a NiDag 6008 (Natitnstruments)

downward movement of the connected stick at a constafftd conveyed to the computer via an USB-port.
pressure. In the control circuit inside the RC servo there
is a variable resistor that provides the control circuithwit ) ) ) )
information whether the RC servo has been reaching theThe exp!oratlon with the texture sensor is done by Iettlr_wg
wanted position or not. In our design, we measure the valdi§ €ver (Fig. 1c) turn 36 degrees during one second. During
of this variable resistor at the end of the exploration of th&iS movement the vibrations from the metal edge (Fig. 1b)
material and thus get a measure of the end position of tsd over the object are recorded by the microphone (Fig. 1a)
stick in the exploration. This end position is proportiotml Mounted at the end of the stick.
the compression of the explored material. The value of the The output from the texture sensor from all these explo-
variable resistor is conveyed to a computer and represente@dions has then been written to a file after the application o
in binary form. the FFT. Likewise the output from the hardness sensor has
The actuators for both the sensors are controlled frof€€n written to a file represented as binary numbers. The
the computer via a SSC-32 controller board (Lynxmotioﬁ‘ard“ess samples can be considered to be binary v_ectors of
Inc.). The software for all systems presented in this pap&fndth 18 whereas the texture samples can be considered to
is developed in C++ and much of it runs within the Ikarod®€ vectors of length 2049. The eight objects have various
system [1][2]. Ikaros provides an infrastructure for corgpu Kinds of texture and can be divided into two groups, one

simulations of the brain and for robot control. with four rather soft objects and one with four rather hard
objects. During the exploration the objects were fixed in the
I1l. EXPLORATION OF OBJECTS same location under the sensors.

Each model described in this paper have been trained and IV. A TEXTURE PERCEPTION MODEL
tested with one or both of two sets of samples. One set
consists of 40 samples of texture data and the other setThe texture perception model (Fig. 2 A) is a monomodal
consists of 40 samples of hardness data. These sets hawedel. This means that the raw sensor output from the
been constructed by letting the sensors explore each of ttexture sensor is transformed by the FFT into a spectrogram
eight objects described in Tab. 1 five times. containing 2049 frequencies, and the spectrogram repre-
During the hardness exploration of an object the tip oéented by a vector is in turn conveyed to a SOM, which
the hardness sensor stick (Fig. 1d) is pressed against thees softmax activation [3] with the softmax exponent equal
object with a constant force and the displacement whereta 10. After training the SOM will represent the textural
fixe sensor reading is obtained is measured. properties of the explored objects.



TABLE |
THE EIGHT OBJECTS USED IN THE EXPERIMENTS WITH THE TEXTURE ANDHE HARDNESS MODELS THE OBJECTS AH WERE USED BOTH FOR
TRAINING AND TESTING. THE MATERIALS OF THE OBJECTS ARE PRESENTED AND THEY ARE SUBJEG/ELY CLASSIFIED AS EITHER HARD OR SOFT
A ROUGH SUBJECTIVE ESTIMATION OF THEIR TEXTURAL PROPERTIESIALSO PROVIDED

Label | Object Estimated Hardness$ Estimated Texture
a Foam Rubber Soft Somewhat Fine

b Hardcover Book Hard Shiny

c Bundle of Paper Hard Fine

d Cork Doily Hard Rough

e Wood Doily Hard Fine

f Bundle of Jeans Fabric | Soft Somewhat Fine

g Bundle of Cotton Fabric| Soft Somewhat Fine

h Terry Cloth Fabric Soft Rough

We have experimented with different parameter settings of
the texture SOM, both with the aim to get a well-working
monomodal model and to get a model that would serve A.
well as a part of a multimodal model, and we reached
the conclusion that a well-working set of parameters is to
use a SOM with15 x 15 neurons with a plane topology.

A torus topology was also tested but turned out to be
less effective than a plane topology. The sort of topology
used influences the behaviour of the SOM at the borders. Texure
With plane topology the activations from the objects in the

training set tend to be close to the borders, which turned
out to be good when the texture perception model was usedD. A C
as a part of the combined monomodal/multimodal model

described below. We also experimented with different decay
rates of the Gaussian neighbourhood function. We came to

the conclusion that a neighbourhood radius of 15 at the
start of the training phase, which decreased graduallyl unti /

B. SOM
Hardness

Hardness
Sensor

SOM SOm
Texture Hardness

it was approximately 1 after 1000 iterations, and stayed at 1
during the rest of the training phase, was satisfactorys Thi
model and all the others were trained during 2000 iterations T

before evaluation. We reasoned that it would be good if

the neighbourhood had shrunk to a small value after about

1000 iterations in order to let the multimodal SOM of the T

combined model, described below, get enough iterations t0 / Texture Hardness Texture Hardness
self-organize. In other words, the idea was that the texture/ Sensor / / Sensor / / Sensor / / Sensor /
SOM should be rather well organized after 1000 iterations.

IRl

Fig. 2. Schematic depiction of the good working model agttitres.

V. AHARDNESS PERCEPTION MODEL A: A monomodal model of texture perception. The raw sensdpaiuis

. . transformed by the FFT into a spectrogram containing 204uiencies.
The hardness perception model is also monomodal. In thige spectrogram represented by a vector is conveyed to a SOM

model (Fig. 2 B), the raw sensor output from the hardneggenomodal model of hardness perception. The raw sensoutotepre-

. - . nted as a binary vector with 18 elements is conveyed to a.SOM
sensor, represented as a bmary number with 18 bits, del with both monomodal and multimodal representatidrigs model

conveyed to a SOM, which like the texture model usegould be seen as a merging and an extension of the previousntwdels,

softmax activation with the softmax exponent equal to 10" likewise the previous two models could be seen as the modahievel

. . of this model. The output from the texture SOM and the outpainfthe
After training, the SOM will represent the hardness prqperthardness SOM is merged, i.e. a new vector is created by tranisiy the

of the explored objects. activations of the texture SOM and the hardness SOM intoovecand
As in the case of the texture model we have experimentétting them after each other. The merged vector is used @& io a

. . . Itimodal SOM. This means that in this model there are eg&nizing
with different parameter settings of the hardness SOM, ar{&gresentaﬁons of texture and hardness as well as a comnt@peesentation

for the same reasons. In this case we also tested a lot @foth. D: A multimodal model. This model directly combint output

different sizes of the monomodal SOM. This was becaudgm the FFT and the binary output from the hardness sensoramew
. . . . ctor in the same way as described in the previous modelyitiibut the

prellmlnary experiments '_ndlcated that it could '?e a gooéteep with monomodal representations. The combined vestosad as input

idea to use a very small sized SOM for hardness in the cond-a multimodal SOM.

bined model described below. This was because a small sized

hardness SOM seemed to self-organize solely according to



the hardness property and not distinguish individual dbjec the FFT. This means that this model has no monomodal
and since the texture SOM was better at distinguishingepresentations. The combined vector was used as input to a
individual objects we did not want the hardness part tonultimodal SOM with the same settings as in the combined
blur this although we wanted it to make the multimodamodel above. Also in this model we tried to use T-MPSOM
representation become organized according to hardnessbas with a worse result than with this simpler method.

well. We tried SOMs with planar as well as torus topology

and with 15 x 15, 10 x 10, 5 x 5, 2 x 2 or 1 x 2 neurons. Vlil. RESULTS AND DISCUSSION

All variants started with a neighbourhood size that covered The mapping of the objects (a-h in Tab. 1) used in the
the whole SOM and the rates of decay of the neighbourho@xkperiments with the different models is depicted in Fig. 3.
were adjusted so that the neighbourhood would shrink to EBach image in the figure corresponds to a SOM in a fully
radius of approximately 1 after about 1000 iterations. As wiained model and each cell in an image corresponds to a
had expected the5 x 15 neurons SOM (with plane topology) neuron in the corresponding SOM. A filled circle in a cell
was best in this monomodal model but we also found thaits supposed to mean that that particular neuron is the centre
as suspected, all tested sizes but one indeed organizedofoactivation in one or several explorations. In fig. 3A the
divide the objects into the categories hard and soft onesiapping of individual texture explorations with the texdur
The exception was the SOM with onlyx 2 neurons, which model have been encircled. As can be seen, most objects
did not preserve the division of hard and soft objects in are mapped at separate sites in the SOM (c, d, e, f, h).

good way. There are some exceptions though, namely a, b and g. So
the texture model is able to discriminate between individua
VI. ACOMBINED MONOMODAL AND objects, although not perfectly.

MULTIMODAL MODEL The SOM in the hardness model, depicted in Fig. 3 B, also
In this model (Fig. 2 C) we experimented with differentmaps different objects at different sites in the SOM but sot a
ways of combining the output from the monomodal SOMgood as the texture model. The hardness model recognizes b,
to an input for the multimodal SOM. First we tried a method and h perfectly and blurs the other more or less. However,
for cross coding that we have used in other contexts. In thise model perfectly discriminates hard from soft objects.
method a two-vector input self-organizing neural network The combined monomodal and multimodal model (Fig.
called T-MPSOM [8] that self-organize into something sim-3 C), which as mentioned above can be seen as a merging
ilar to tensor product operation, which is an operation oand extension of the texture model and the hardness model
two vectors resulting in a matrix, was used to combine théwvith 2x2 neurons in the SOM), discriminate hard from soft
outputs from the monomodal SOMs. In previous research thabjects well. In two explorations the hard/soft category is
T-MPSOM was very successful in coding proprioceptive inundetermined. This is so because one exploration of antobjec
formation and it also worked in the current model. Howevem and one exploration of an object g have the same centre of
we also experimented with a simpler method of combiningctivation. It also discriminates perfectly between thgeots
the monomodal outputs, which was also superior for thib, d, f and h.
aim. This method was simply to combine the activity of the The multimodal model (Fig. 3 D) discriminates perfectly
monomodal SOMs, re-arranged into vectors, by creating lzetween the objects c, d, e, f and h, i.e. the same objects as in
new vector by putting the hardness output vector after thie texture model. Moreover, it also discriminates haranfro
texture output vector. soft objects, although in seven explorations the hard/soft
The monomodal texture SOM uséd x 15 neurons with category is undetermined because three explorations of the
the same parameter setting as in the texture model. In thbject a and four explorations of the object b have the same
case of the monomodal hardness SOM we tried two differeaentre of activation.
variations, namely & x 2 neurons SOM and a5 x 15 An interesting observation can be made from Fig. 3,
neurons SOM with the settings specified in the hardnesamely that objects mapped close to each other in the texture
model above. Both worked fine but the variation with thenodel also tend to be mapped close to each other in the
2 x 2 neurons SOM yielded the best representation in theombined monomodal and multimodal model and in the
multimodal SOM. The multimodal SOM had similar settingsmultimodal model, but not so in the hardness model. This
as the monomodal texture SOM, but the decay rate of treuld be interpreted as that the multimodal SOMs seek to
neighbourhood was set to decrease the neighbourhood radiweserve the texture map but re-organize it so that hard and
to one in 2000 iterations. soft objects are discriminated.
Our experiments with texture complement those done by
vil. AMULTIMODAL MODEL Edwards et al [5] and Hosoda et al [6] because they only
In the multimodal model (Fig. 2 D) we combined theshow that the signals from their sensors are in principle
output from the texture sensor, after transformation into aseful as texture sensors whereas we actually implement
spectrogram by a FFT, with the raw hardness sensor outputworking system. When compared to the work done by
expressed as a binary number by the same method as in Mayol-Cuevas et al [13] our texture experiments differ in
combined model described above, i.e. by putting the outpthiat we use a sensor that is not manually rubbed over the
vector from the hardness sensor after the output vector fromaterial as their pen, but moved by an actuator built into
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Fig. 3. The mapping of the objects used in the experiments. cFaracters a-h refer to the objects in Tab. 1. Each imageeiriigure corresponds to
a SOM in a fully trained model and each square represents @méw the SOM, which consists df5 x 15 = 225 neurons. A filled circle in a cell is
supposed to mean that that particular neuron is the centaetivhtion for one or several explorations. The occurrevfca certain letter at more than one
place means that the corresponding object has differeritesenf activation during different explorations of the saobject, i.e. all letters of a certain
kind represents all occurring centres of activation in ti@vBwhen the system was tested with the corresponding objecthe monomodal SOM in the
texture model. The centres of activation of all instancegadh object have been encircled. The objects c, d, e, f ané mapped at non-overlapping
sites in the SOM, whereas the objects a, b and g are not. Thidbeanterpreted as that the texture model is able to disgetai between individual
objects, although not perfectly. B: The monomodal SOM inhhedness model. In this model the objects b, f and h are plrfiecognized, whereas the
others are not. Moreover, the model perfectly discrimigidtard from soft objects. C: The multimodal SOM in the combdingnomodal and multimodal
model. In this model the objects b, d, f and h are perfectlypgeized, whereas the others are not. It also discriminaaed fiom soft objects. In two
explorations the hard/soft category is undetermined, us@ne exploration of an object a and one exploration of gecbly have the same centre of
activation. D: The multimodal SOM in the multimodal mode. this model the objects c, d, e, f and h are perfectly discrated, i.e. the same objects as
in the texture model. Moreover, it also discriminates hawinf soft objects, although in seven explorations the hafdémtegory is undetermined because
three explorations of the object a and four explorationshefdbject b have the same centre of activation.



the sensor. Another difference is that our system is seléensor on a microphone and base hardness perception on
organizing. An extension in our experiments when compardtie measurements of displacements at a constant applied
to all the previously mentioned experiments and to the worfressure, we will in the future try to integrate this apptoac
done by Campos and Bajcsy [4] is that we also experiment&dth our haptic systems. In other words we will carry out
with both hardness and texture and the merging of these tvexperiments in which we equip future robot hands with
submodalities. Like the work of Mazid and Russel [12], oumicrophone based texture sensors and measure hardness by
system detects the profile of a surface, but is based on thetting a finger press on the explored material at a constant
much simpler principle of vibration. pressure while measuring the displacement. This couldtresu

Our work is probably most similar to the system by Takain systems that explore objects and more or less immediately
muku et al [14], although their sensors are rather differengain information about the objects shape, size, hardness an
Instead of using microphone based sensors they used a seriegtural properties. This will yield a system that is able to
material based on strain gauges within silicone rubber. Fdiscriminate between equally shaped and sized objects made
exploration they used squeezing as well as tapping. Thedf different materials.
work is also S|mllar in that self-orglamzmg_maps were used REFERENCES
for each submodality. However, this robotic system did not
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