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Abstract— We have experimented with different neural net-
work based architectures for bio-inspired self-organizing tex-
ture and hardness perception systems. To this end we have
developed a microphone based texture sensor and a hardness
sensor that measures the compression of the material at a
constant pressure. We have implemented and successfully tested
both monomodal systems for texture and hardness perception
and multimodal systems that merge texture and hardness data
into one representation. All systems were trained and tested
with multiple samples gained from the exploration of a set of4
soft and 4 hard objects of different materials. The monomodal
texture system was good at mapping individual objects in
a sensible way, the hardness systems was good at mapping
individual objects and in addition dividing the objects into
categories of hard and soft objects. The multimodal system was
successful in merging the two modalities into a representation
that performed at least as good as the best recognizer of
individual objects, i.e. the texture system, and at the sametime
categorizing the objects into hard and soft.

I. INTRODUCTION

Two important submodalities in haptic perception are
texture and hardness perception. In non-interactive tasks, the
estimation of properties like the size and the shape of an
external object is often to a large extent based on vision
only and haptic perception will only be employed when
visual information about the object is not reliable. This might
happen for example at bad lighting conditions or when the
object is more or less occluded. Haptic submodalities like
texture and hardness perception are different in this respect.
These submodalities are especially important because they
provide information about the outer world that is unavailable
for all the other perception channels.

There have been some previous studies of texture and
hardness in robotics. For example Hosoda et al [6] have
built an anthropomorphic fingertip with distributed receptors
consisting of two silicon rubber layers of different hardness.
The silicon rubber layers contain two different sensors, strain
gauges and polyvinylidene fluoride films, which yield signals
that in a test enabled the discrimination of five different
materials pushed and rubbed by the fingertip. Mayol-Cuevas
et al [13] describes a system for tactile texture recognition,
which employs a sensing pen with a microphone that is man-
ually rubbed over the explored materials. The system uses
a supervised Learning Vector Quantization (LVQ) classifier
system to identify with 93% accuracy 18 common materials
after signal processing with the Fast Fourier Transform
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(FFT). Edwards et al [5] have used a vinyl record player with
the needle replaced with an artificial finger with an embedded
microphone to quantify textural features by using a group of
manufactured discs with different textural patterns. Campos
and Bajcsy [4] have explored haptic Exploratory Procedures
(EPs) based on human haptic EPs proposed by Lederman
and Klatzky, among them an EP for hardness exploration in
which the applied force is measured for a given displacement.

Our previous research on haptic perception has resulted
in the design and implementation of a number of versions
of three different working haptic systems. The first system
[7] was a system for haptic size perception. It used a simple
three-fingered robot hand, the LUCS Haptic Hand I, with the
thumb as the only movable part. The LUCS Haptic Hand
I was equipped with 9 piezo electric tactile sensors. This
system used Self-Organizing Maps (SOMs) [11] and a neural
network with leaky integrators. A SOM is a self-organizing
neural network that finds a low-dimensional discretized and
topology preserving representation of the input space. The
system successfully learned to categorize a test set of spheres
and cubes according to size.

The second system [8] was a system for haptic shape
perception and used a three-fingered 8 d.o.f. robot hand, the
LUCS Haptic Hand II, equipped with a wrist for horizontal
rotation and a mechanism for vertical re-positioning. This
robot hand was equipped with 45 piezo electric tactile
sensors. This system used active explorations of the objects
by several grasps with the robot hand to gather tactile
information, which together with the positioning commands
to the actuators (thus a kind of pseudoproprioception) were
cross-coded by, depending on the version, either tensor
product (outer product) operations or a novel neural network,
the Tensor Multiple Peak SOM (T-MPSOM) [8]. The cross-
coded information was categorized by a SOM. The system
successfully learned to discriminate between different shapes
as well as between different objects within a shape category
when tested with a set of spheres, blocks and cylinders.

The third system [9] was a bio-inspired self-organizing
system for haptic shape and size perception based solely
on proprioceptive data from a 12 d.o.f. anthropomorphic
robot hand with proprioceptive sensors [10]. The system was
trained with 10 different objects of different sizes from two
different shape categories and tested with both the training
set and a novel set with 6 previously unused objects. It was
able to discriminate the shape as well as the size of the
objects in both the original training set and the set of new
objects.

This paper explores neural network based models of tex-
ture and hardness perception as well as models that merges



these submodalities. All models employ a microphone based
texture sensor and/or a hardness sensor that measures the
compression of the material at a constant pressure.

II. SENSORS IN THE EXPERIMENTS

All models discussed in this paper employ at least one of
two sensors (Fig. 1) developed at Lund University Cognitive
Science (LUCS). One of these sensors is a texture sensor
and the other is a hardness sensor.

The texture sensor consists of a capacitor microphone with
a tiny metal edge mounted at the end of a moveable lever,
which in turn is mounted on an RC servo. When exploring
a material the lever is turned by the RC servo, which moves
the microphone with the attached metal edge along a curved
path in the horizontal plane. This makes the metal edge
slide over the explored material, which creates vibrationsin
the metal edge with frequencies that depend on the textural
properties of the material. The vibrations are transferredto
the microphone since there is contact between it and the
metal edge. The signals are then sampled and digitalized by
a NiDaq 6008 (National Instruments) and then conveyed to
a computer via an USB-port. The FFT is then applied to
the input, thus yielding a spectrogram of 2049 component
frequencies.

The hardness sensor consists of a stick mounted on a
RC servo. During the exploration of a material the RC
servo tries to move to a certain position, which causes a
downward movement of the connected stick at a constant
pressure. In the control circuit inside the RC servo there
is a variable resistor that provides the control circuit with
information whether the RC servo has been reaching the
wanted position or not. In our design, we measure the value
of this variable resistor at the end of the exploration of the
material and thus get a measure of the end position of the
stick in the exploration. This end position is proportionalto
the compression of the explored material. The value of the
variable resistor is conveyed to a computer and represented
in binary form.

The actuators for both the sensors are controlled from
the computer via a SSC-32 controller board (Lynxmotion
Inc.). The software for all systems presented in this paper
is developed in C++ and much of it runs within the Ikaros
system [1][2]. Ikaros provides an infrastructure for computer
simulations of the brain and for robot control.

III. EXPLORATION OF OBJECTS

Each model described in this paper have been trained and
tested with one or both of two sets of samples. One set
consists of 40 samples of texture data and the other set
consists of 40 samples of hardness data. These sets have
been constructed by letting the sensors explore each of the
eight objects described in Tab. 1 five times.

During the hardness exploration of an object the tip of
the hardness sensor stick (Fig. 1d) is pressed against the
object with a constant force and the displacement where a
fixe sensor reading is obtained is measured.

Fig. 1. The texture and hardness sensors while exploring a piece of foam
rubber. The texture sensor consists of a capacitor microphone (a) with a
metal edge (b) mounted at the end of a moveable lever (c), which in turn
is mounted on a RC servo. The hardness sensor consists of a stick (d)
mounted on a RC servo. The servo belonging to the hardness sensor contains
a variable resistor that provides a measure of the turning ofthe servo, and
thus the displacement of the stick, which is proportional tothe compression
of the explored material. The actuators are controlled via aSSC-32 controller
board (Lynxmotion Inc.). The measure of the resistance of the variable
resistor in the RC servo for the hardness sensor and the microphone signal of
the texture sensor are digitalized using a NiDaq 6008 (National Instruments)
and conveyed to the computer via an USB-port.

The exploration with the texture sensor is done by letting
its lever (Fig. 1c) turn 36 degrees during one second. During
this movement the vibrations from the metal edge (Fig. 1b)
slid over the object are recorded by the microphone (Fig. 1a)
mounted at the end of the stick.

The output from the texture sensor from all these explo-
rations has then been written to a file after the application of
the FFT. Likewise the output from the hardness sensor has
been written to a file represented as binary numbers. The
hardness samples can be considered to be binary vectors of
length 18 whereas the texture samples can be considered to
be vectors of length 2049. The eight objects have various
kinds of texture and can be divided into two groups, one
with four rather soft objects and one with four rather hard
objects. During the exploration the objects were fixed in the
same location under the sensors.

IV. A TEXTURE PERCEPTION MODEL

The texture perception model (Fig. 2 A) is a monomodal
model. This means that the raw sensor output from the
texture sensor is transformed by the FFT into a spectrogram
containing 2049 frequencies, and the spectrogram repre-
sented by a vector is in turn conveyed to a SOM, which
uses softmax activation [3] with the softmax exponent equal
to 10. After training the SOM will represent the textural
properties of the explored objects.



TABLE I

THE EIGHT OBJECTS USED IN THE EXPERIMENTS WITH THE TEXTURE ANDTHE HARDNESS MODELS. THE OBJECTS A-H WERE USED BOTH FOR

TRAINING AND TESTING. THE MATERIALS OF THE OBJECTS ARE PRESENTED AND THEY ARE SUBJECTIVELY CLASSIFIED AS EITHER HARD OR SOFT.

A ROUGH SUBJECTIVE ESTIMATION OF THEIR TEXTURAL PROPERTIES IS ALSO PROVIDED.

Label Object Estimated Hardness Estimated Texture
a Foam Rubber Soft Somewhat Fine
b Hardcover Book Hard Shiny
c Bundle of Paper Hard Fine
d Cork Doily Hard Rough
e Wood Doily Hard Fine
f Bundle of Jeans Fabric Soft Somewhat Fine
g Bundle of Cotton Fabric Soft Somewhat Fine
h Terry Cloth Fabric Soft Rough

We have experimented with different parameter settings of
the texture SOM, both with the aim to get a well-working
monomodal model and to get a model that would serve
well as a part of a multimodal model, and we reached
the conclusion that a well-working set of parameters is to
use a SOM with15 × 15 neurons with a plane topology.
A torus topology was also tested but turned out to be
less effective than a plane topology. The sort of topology
used influences the behaviour of the SOM at the borders.
With plane topology the activations from the objects in the
training set tend to be close to the borders, which turned
out to be good when the texture perception model was used
as a part of the combined monomodal/multimodal model
described below. We also experimented with different decay
rates of the Gaussian neighbourhood function. We came to
the conclusion that a neighbourhood radius of 15 at the
start of the training phase, which decreased gradually until
it was approximately 1 after 1000 iterations, and stayed at 1
during the rest of the training phase, was satisfactory. This
model and all the others were trained during 2000 iterations
before evaluation. We reasoned that it would be good if
the neighbourhood had shrunk to a small value after about
1000 iterations in order to let the multimodal SOM of the
combined model, described below, get enough iterations to
self-organize. In other words, the idea was that the texture
SOM should be rather well organized after 1000 iterations.

V. A HARDNESS PERCEPTION MODEL

The hardness perception model is also monomodal. In this
model (Fig. 2 B), the raw sensor output from the hardness
sensor, represented as a binary number with 18 bits, is
conveyed to a SOM, which like the texture model uses
softmax activation with the softmax exponent equal to 10.
After training, the SOM will represent the hardness property
of the explored objects.

As in the case of the texture model we have experimented
with different parameter settings of the hardness SOM, and
for the same reasons. In this case we also tested a lot of
different sizes of the monomodal SOM. This was because
preliminary experiments indicated that it could be a good
idea to use a very small sized SOM for hardness in the com-
bined model described below. This was because a small sized
hardness SOM seemed to self-organize solely according to
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Fig. 2. Schematic depiction of the good working model architectures.
A: A monomodal model of texture perception. The raw sensor output is
transformed by the FFT into a spectrogram containing 2049 frequencies.
The spectrogram represented by a vector is conveyed to a SOM.B: A
monomodal model of hardness perception. The raw sensor output repre-
sented as a binary vector with 18 elements is conveyed to a SOM. C: A
model with both monomodal and multimodal representations.This model
could be seen as a merging and an extension of the previous twomodels,
or likewise the previous two models could be seen as the monomodal level
of this model. The output from the texture SOM and the output from the
hardness SOM is merged, i.e. a new vector is created by transforming the
activations of the texture SOM and the hardness SOM into vectors and
putting them after each other. The merged vector is used as input to a
multimodal SOM. This means that in this model there are self-organizing
representations of texture and hardness as well as a combined representation
of both. D: A multimodal model. This model directly combinesthe output
from the FFT and the binary output from the hardness sensor into a new
vector in the same way as described in the previous model, butwithout the
step with monomodal representations. The combined vector is used as input
to a multimodal SOM.



the hardness property and not distinguish individual objects,
and since the texture SOM was better at distinguishing
individual objects we did not want the hardness part to
blur this although we wanted it to make the multimodal
representation become organized according to hardness as
well. We tried SOMs with planar as well as torus topology
and with 15 × 15, 10 × 10, 5 × 5, 2 × 2 or 1 × 2 neurons.
All variants started with a neighbourhood size that covered
the whole SOM and the rates of decay of the neighbourhood
were adjusted so that the neighbourhood would shrink to a
radius of approximately 1 after about 1000 iterations. As we
had expected the15×15 neurons SOM (with plane topology)
was best in this monomodal model but we also found that,
as suspected, all tested sizes but one indeed organized to
divide the objects into the categories hard and soft ones.
The exception was the SOM with only1×2 neurons, which
did not preserve the division of hard and soft objects in a
good way.

VI. A COMBINED MONOMODAL AND
MULTIMODAL MODEL

In this model (Fig. 2 C) we experimented with different
ways of combining the output from the monomodal SOMs
to an input for the multimodal SOM. First we tried a method
for cross coding that we have used in other contexts. In this
method a two-vector input self-organizing neural network
called T-MPSOM [8] that self-organize into something sim-
ilar to tensor product operation, which is an operation on
two vectors resulting in a matrix, was used to combine the
outputs from the monomodal SOMs. In previous research the
T-MPSOM was very successful in coding proprioceptive in-
formation and it also worked in the current model. However,
we also experimented with a simpler method of combining
the monomodal outputs, which was also superior for this
aim. This method was simply to combine the activity of the
monomodal SOMs, re-arranged into vectors, by creating a
new vector by putting the hardness output vector after the
texture output vector.

The monomodal texture SOM used15× 15 neurons with
the same parameter setting as in the texture model. In the
case of the monomodal hardness SOM we tried two different
variations, namely a2 × 2 neurons SOM and a15 × 15

neurons SOM with the settings specified in the hardness
model above. Both worked fine but the variation with the
2 × 2 neurons SOM yielded the best representation in the
multimodal SOM. The multimodal SOM had similar settings
as the monomodal texture SOM, but the decay rate of the
neighbourhood was set to decrease the neighbourhood radius
to one in 2000 iterations.

VII. A MULTIMODAL MODEL

In the multimodal model (Fig. 2 D) we combined the
output from the texture sensor, after transformation into a
spectrogram by a FFT, with the raw hardness sensor output
expressed as a binary number by the same method as in the
combined model described above, i.e. by putting the output
vector from the hardness sensor after the output vector from

the FFT. This means that this model has no monomodal
representations. The combined vector was used as input to a
multimodal SOM with the same settings as in the combined
model above. Also in this model we tried to use T-MPSOM
but with a worse result than with this simpler method.

VIII. RESULTS AND DISCUSSION

The mapping of the objects (a-h in Tab. 1) used in the
experiments with the different models is depicted in Fig. 3.
Each image in the figure corresponds to a SOM in a fully
trained model and each cell in an image corresponds to a
neuron in the corresponding SOM. A filled circle in a cell
is supposed to mean that that particular neuron is the centre
of activation in one or several explorations. In fig. 3A the
mapping of individual texture explorations with the texture
model have been encircled. As can be seen, most objects
are mapped at separate sites in the SOM (c, d, e, f, h).
There are some exceptions though, namely a, b and g. So
the texture model is able to discriminate between individual
objects, although not perfectly.

The SOM in the hardness model, depicted in Fig. 3 B, also
maps different objects at different sites in the SOM but not as
good as the texture model. The hardness model recognizes b,
f and h perfectly and blurs the other more or less. However,
the model perfectly discriminates hard from soft objects.

The combined monomodal and multimodal model (Fig.
3 C), which as mentioned above can be seen as a merging
and extension of the texture model and the hardness model
(with 2×2 neurons in the SOM), discriminate hard from soft
objects well. In two explorations the hard/soft category is
undetermined. This is so because one exploration of an object
a and one exploration of an object g have the same centre of
activation. It also discriminates perfectly between the objects
b, d, f and h.

The multimodal model (Fig. 3 D) discriminates perfectly
between the objects c, d, e, f and h, i.e. the same objects as in
the texture model. Moreover, it also discriminates hard from
soft objects, although in seven explorations the hard/soft
category is undetermined because three explorations of the
object a and four explorations of the object b have the same
centre of activation.

An interesting observation can be made from Fig. 3,
namely that objects mapped close to each other in the texture
model also tend to be mapped close to each other in the
combined monomodal and multimodal model and in the
multimodal model, but not so in the hardness model. This
could be interpreted as that the multimodal SOMs seek to
preserve the texture map but re-organize it so that hard and
soft objects are discriminated.

Our experiments with texture complement those done by
Edwards et al [5] and Hosoda et al [6] because they only
show that the signals from their sensors are in principle
useful as texture sensors whereas we actually implement
a working system. When compared to the work done by
Mayol-Cuevas et al [13] our texture experiments differ in
that we use a sensor that is not manually rubbed over the
material as their pen, but moved by an actuator built into
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Fig. 3. The mapping of the objects used in the experiments. The characters a-h refer to the objects in Tab. 1. Each image in the figure corresponds to
a SOM in a fully trained model and each square represents a neuron in the SOM, which consists of15 × 15 = 225 neurons. A filled circle in a cell is
supposed to mean that that particular neuron is the centre ofactivation for one or several explorations. The occurrenceof a certain letter at more than one
place means that the corresponding object has different centres of activation during different explorations of the same object, i.e. all letters of a certain
kind represents all occurring centres of activation in the SOM when the system was tested with the corresponding object.A: The monomodal SOM in the
texture model. The centres of activation of all instances ofeach object have been encircled. The objects c, d, e, f and h are mapped at non-overlapping
sites in the SOM, whereas the objects a, b and g are not. This can be interpreted as that the texture model is able to discriminate between individual
objects, although not perfectly. B: The monomodal SOM in thehardness model. In this model the objects b, f and h are perfectly recognized, whereas the
others are not. Moreover, the model perfectly discriminates hard from soft objects. C: The multimodal SOM in the combined monomodal and multimodal
model. In this model the objects b, d, f and h are perfectly recognized, whereas the others are not. It also discriminates hard from soft objects. In two
explorations the hard/soft category is undetermined, because one exploration of an object a and one exploration of an object g have the same centre of
activation. D: The multimodal SOM in the multimodal model. In this model the objects c, d, e, f and h are perfectly discriminated, i.e. the same objects as
in the texture model. Moreover, it also discriminates hard from soft objects, although in seven explorations the hard/soft category is undetermined because
three explorations of the object a and four explorations of the object b have the same centre of activation.



the sensor. Another difference is that our system is self-
organizing. An extension in our experiments when compared
to all the previously mentioned experiments and to the work
done by Campos and Bajcsy [4] is that we also experimented
with both hardness and texture and the merging of these two
submodalities. Like the work of Mazid and Russel [12], our
system detects the profile of a surface, but is based on the
much simpler principle of vibration.

Our work is probably most similar to the system by Taka-
muku et al [14], although their sensors are rather different.
Instead of using microphone based sensors they used a sensor
material based on strain gauges within silicone rubber. For
exploration they used squeezing as well as tapping. Their
work is also similar in that self-organizing maps were used
for each submodality. However, this robotic system did not
investigate the use of multimodal convergence which is the
main contribution of our work.

In conclusion the multimodal model seems to be the best
one since it recognizes as many individual objects as the
monomodal texture model and in addition recognizes most
of the objects as either soft or hard. However the combined
monomodal and multimodal model recognizes the hardness
of more objects correctly, but it comes at the price of being
slightly worse at recognizing individual objects.

IX. CONCLUSION

We have experimented with several self-organizing sys-
tems for object recognition based on textural and/or hard-
ness input. The texture sensor employed is based on the
transmission of vibrations to a microphone when the sensor
slides over the surface of the explored material. The hardness
sensor is based on the measurement of displacement of a
stick when pressed against the material at a constant pressure.
The results are encouraging, both for the monomodal systems
and the multimodal systems. The multimodal systems seem
to benefit from both submodalities and yield representations
that are better than those in the monomodal systems. This
is particularly true because the multimodal representations
preserve the discrimination ability of the monomodal texture
model and also seem to preserve the way that model groups
the objects. The influence of the hardness input makes the
multimodal representation organize according to hardnessas
well.

Because of the successful approach to base a texture

sensor on a microphone and base hardness perception on
the measurements of displacements at a constant applied
pressure, we will in the future try to integrate this approach
with our haptic systems. In other words we will carry out
experiments in which we equip future robot hands with
microphone based texture sensors and measure hardness by
letting a finger press on the explored material at a constant
pressure while measuring the displacement. This could result
in systems that explore objects and more or less immediately
gain information about the objects shape, size, hardness and
textural properties. This will yield a system that is able to
discriminate between equally shaped and sized objects made
of different materials.
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