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Abstract

We have developed an 8 d.o.f. robot hand,
which has been tested with two computational
models of haptic perception. Each model uses
a variant of the novel self-organizing neural net-
work, the Tensor-Multiple Peak Self-Organizing
Map (T-MPSOM). One of the models uses a vari-
ant of the T-MPSOM that multiplies the activ-
ity corresponding to each of the two input vec-
tors, while the other uses a variant that sums
them. The computational models were trained
and tested with a set of objects consisting of hard
spheres, blocks and cylinders. Both models were
capable of shape categorization, and in addition,
one of the models was able to discriminate indi-
vidual objects.

1. Introduction

Haptic perception is the ability to interpret tactile sen-
sory information gathered by active exploration with the
hands. One way to research haptic perception is to de-
sign and implement artificial organs for haptic percep-
tion based on cognitive and neurophysiological knowl-
edge. Models of the involved neural systems can be im-
plemented as computational models while the hands are
best to implement physically as robot hands. There has
been surprisingly little research aimed at haptic percep-
tion. One reason might be the scarcity of well-working
tactile sensors of a limited cost. Another reason might
be that a lot of attention has been focused at visual per-
ception. Most models of hand control deals with motor
aspects rather than haptic perception (Arbib, Billard,
Iacoboni & Oztop, 2000; Fagg & Arbib, 1998). This
is true also for most robotic hand research has focused
on grasping and object manipulation rather than hap-
tic perception (DeLaurentis & Mavroidis, 2000; Sug-
iuchi, Hasegawa, Watanabe & Nomoto, 2000; Dario,
Guglielmelli, & Laschi, 2001; Laschi, Gorce, Coronado,
Leoni, Teti, Rezzoug, Guerrero-Gonzalez, Molina, Zollo,
Guglielmelli, Dario & Burnod, 2002; Dario, Laschi, Men-
ciassi, Guglielmelli, Carrozza & Micera, 2003; Rhee,
Chung, Kim, Shim & Lee, 2004).

There are some exceptions though. Dario et al (2000)
developed a system for haptic object classification, and
Coelho et al (2001) developed a system that integrates
vision and haptics. A cost effective artificial fingertip
with force/position sensors and slippage detection have
been developed by Jockusch, Walter and Ritter (1997).
The fingertip was integrated with the TUM robot hand
developed at the Technical University of Munich. An
anthropomorphic robot finger with a soft fingertip with
randomly distributed embedded receptors has been de-
veloped by Hosoda, Tada and Asada (2006). A system
for haptic object identification, which uses a low-cost
2D pressure sensor with coarse resolution has been de-
veloped by Heidemann and Schöpfer (2004). The sensor
is mounted on a PUMA-200 industrial robot arm. The
haptic system collects information by repeated contacts
with the object, where after the information is combined
to a vector. This vector is used as input to a three-step
processing architecture for automatic feature formation.

Previously, we have designed and implemented a
three-fingered robot hand, the Lucs Haptic Hand I, to-
gether with a series of computational models (Johnsson,
2004, 2005; Johnsson et al., 2005a, 2005b; Johnsson &
Balkenius, 2006a). The purpose of these systems was
to identify important principles of design for our future
haptic systems, and to gain experience and knowledge
before designing more potent versions. The Lucs Haptic
Hand I together with its haptic models was able to learn
to categorize the test objects according to size.

To take the next step in our research, we have de-
veloped a second robot hand, the Lucs Haptic Hand II
(Johnsson & Balkenius, 2006b). The first aim of the Lucs
Haptic Hand II was to develop haptic systems capable of
shape perception. So far we have successfully developed
haptic models for the Lucs Haptic Hand II that combine
tactile and proprioceptic information using the tensor
product in one or several steps (Johnsson & Balkenius,
2006c). This paper describes a couple of successful hap-
tic models for shape perception that are based on our
novel T-MPSOM neural network and the Lucs Haptic
Hand II. The T-MPSOM is a variant of a self-organizing
neural network. For excellent texts on self-organizing
neural networks, see e.g. (Fritzke, 1997; Kohonen, 1988,



1990, 2001). The first model in this paper has been pre-
viously described in (Johnsson & Balkenius, 2006c). The
second model differs from the first in that it uses a more
biologically plausible variant of T-MPSOM.

2. Biological Background

There is a need for several neural mechanisms to en-
able grasping (Castiello, 2005). For example the forces
and movements of the individual fingers have to be con-
trolled. Somatosensory information is gathered by dif-
ferent kinds of receptors in the skin, the joints and the
muscles. This information is used in the locomotion of
the hand, to enable an adequate grasp and in the pro-
cess of identifying an object. There are tactile receptors
for several submodalities, including cutaneous and pro-
prioceptive mechanoreceptors (Gentaz, 2003). When an
object is grasped the sensory information is conveyed
from the receptors to the central nervous system by
the dorsal-medial leminiscal system (Gardner & Kan-
del, 2000; Gardner, Martin & Jessell, 2000). The dorsal
root ganglion neurons have axons that are split into two
branches, whereof one is ascending trough the dorsal col-
umn and synapses in a nucleus in the medulla, and the
other branch ends in the skin, a joint or a muscle where
its terminal constitutes the receptor. In many cases the
terminals are provided by an end organ, called a cor-
puscle, that modifies the mechanical properties of the
receptor. The neurons in the nucleus in the medulla
send out axons that synapse in a nucleus in the con-
tralateral thalamus. The somatosensory information is
processed both sequentially and in parallel (Saper et al,
2000). This is clear since the axons from the neurons in
the thalamic nucleus ascend and synapse in the primary
somatosensory cortex (S1), in the secondary somatosen-
sory areas (S2), and in the posterior parietal areas and
in the motor cortex (Gentaz, 2003).

It is possible to identify objects with passive touch.
The object identification is then based on information
gathered by receptors sensitive to pressure, heat, touch
and pain (Millar, 2006). A better discrimination of the
objects is possible if the objects are actively explored
which has been shown in studies with monkeys and hu-
mans (Millar, 2006). In addition, it is impossible to
identify large objects without active exploration. When
actively exploring an object much more sensory and pro-
prioceptic information can be gathered.

There is a considerable grasping network in the hu-
man brain that includes prefrontal cortex, primary mo-
tor cortex, premotor cortex, supplementary motor area,
primary somatosensory cortex, the inferior parietal lob-
ule, superior parietal lobule, anterior intraparietal area
(AIP), and subcortical areas like the basal ganglia and
cerebellar circuits (Castiello, 2005). The activity in the
AIP and the premotor cortex seem to code for grasping
actions related to the shape and the type of the intended

Figure 1: The Lucs haptic hand II while grasping Rubikś

cube.

object (Castiello, 2005). The AIP seems to represent the
whole action of reaching and grasping and it also seems
to be tuned for precision grips. In contrast, the premotor
cortex seems to represents only a part of the action. The
AIP also seems to contain neurons that visually code for
three-dimensional objects.

3. Lucs Haptic Hand II

The Lucs Haptic Hand II (Fig. 1), developed at Lund
University Cognitive Science (Johnsson & Balkenius,
2006b), is a three-fingered robot hand equipped with 45
pressure sensors. The robot hand has totally 8 d.o.f. The
fingers consist of a distal and a proximal segment. Each
segment contains an actuator (RC servo) and a sensor
plate (Fig. 2) is mounted on the inner side. The distal
segments are articulated against the proximal segments,
which in turn are articulated against a triangular plastic
plate. The triangular plastic plate is in turn mounted
on a wrist consisting of a bearing and a stick connected
to a RC servo for force transmission. The wrist enables
horizontal rotation of the robot hand. The wrist is in
turn mounted on a lifting mechanism that consists of a
splint and another RC servo.

All software and computational models for the Lucs
Haptic Hand II were developed as Ikaros modules (Balke-
nius & Morén, 2003). In Fig. 3 an example of the re-
actions of the 45 sensors during a grasping movement is
shown. A movie of the Lucs Haptic Hand II in action is
available on the web site (Johnsson, 2005).

4. T-MPSOM

The novel Multiple Peak Self-Organizing Map (T-
MPSOM) is a variant of the Self-Organizing Map (SOM)
(Kohonen, 1988, 1990, 2001) with multiple activation,
that takes two input vectors.

Each neuron in the two-dimensional grid that con-



Figure 2: Schematic overview of the Lucs Haptic Hand II.

The three-fingered robot hand has 8 d.o.f. Each finger con-

sists of two segments symmetrically mounted on a triangu-

lar plastic plate. The plastic plate is mounted on a wrist,

which in turn is mounted on a lifting mechanism. Each fin-

ger segment is built with a RC servo and a servo bracket.

The actuators of the Lucs haptic hand II are controlled via a

SSC-32 (Lynxmotion Inc.). Each finger segment is equipped

with a sensor plate (black) containing 7 or 8 piezo-electric

touch sensors.
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Figure 3: Snapshot of the signal pattern from the Lucs Haptic

Hand II during a grasp of an object.

stitutes the T-MPSOM has two weight vectors corre-
sponding to the dimensionality of the two input vectors
received in every iteration. The sum of each input ele-
ment is multiplied with an arbor function (Dayan, 2000),
which corresponds to the receptive field of the neuron,
and the result is further multiplied with the connection
weights. Since there are two input vectors, there will
be two sums and depending on the variant of the T-
MPSOM these sums are then multiplied (Johnsson &
Balkenius, 2006c) or added. This yields the activity of
the neuron.

There is a contribution from every neuron in the neu-
ral network when updating the weights of a neuron. The
degree of contribution from a single neuron is dependent
on the activity of the neuron and a Gaussian function
of the distance between the contributing neuron and the
neuron whose weights are updated. The input vectors
as well as the weight vectors are normalized in each it-
eration.

In mathematical terms, the T-MPSOM consists of a
i × j matrix of neurons. In each iteration every neuron
nij receives the two input vectors a ∈ ℜm and b ∈ ℜn.
nij has two weight vectors wa

ij ∈ ℜm and wb
ij ∈ ℜn.

The activity in the neuron nij is given by

xij =
∑

m

A(i, m)wa
ij

mam

∑

n

A(j, n)wb
ij

nbn

in the variant with multiplied activations, and by

xij =
∑

m

A(i, m)wa
ij

mam +
∑

n

A(j, n)wb
ij

nbn

in the variant with added activations, where

A(α, β) ∝ e−(α−
maxα
maxβ

β)
2

/2σ2

.

The updating of the weight vectors are given by

wa
ij(t + 1) = wa

ij(t) − α(t)βij(t)
[

a(t) − wa
ij(t)

]

and

wb
ij(t + 1) = wb

ij(t) − α(t)βij(t)
[

b(t) − wb
ij(t)

]

,

where 0 ≤ α(t) ≤ 1, and α(t) → 0 when t → ∞. The
learning in each neuron is controlled by

βij(t) =
β′

ij(t)

maxβ′

ij(t)

where

β′

ij(t) =
∑

k

∑

l

xkl(t)G(nkl, nij)

and xkl(t) is the activity in nkl at time t and G(nkl, nij)
is a Gaussian function.



5. Multiple Peak SOM Models

5.1 Designs

We have implemented two variants of haptic models
based on the T-MPSOM neural network. They are sim-
ilar in all aspects but one, that the T-MPSOMs in one
variant multiply the activations while the other adds
them. The haptic models consist of the Lucs Haptic
Hand II, the sensory and motor drivers and five com-
mon Ikaros modules described below (Fig. 4).

Grasping Module: This module corresponds to the
motor areas involved in the human haptic system. Its
responsibility is to carry out individual grasping move-
ments. The movements of the wrist and vertical displace-
ment of the hand is done elsewhere, i.e. at a higher level
of the model. The module starts a grasping movement by
moving the proximal finger segments. During the move-
ment the sensors status of each finger segment are mea-
sured and if the summed sensors registrations exceeds a
certain threshold or the finger segment reaches a max-
imal position, then the segment stops moving. Then a
proximal segment has stopped, the distal segment starts
moving until its sensors summed registrations exceeds a
threshold or the distal segment reaches a maximal posi-
tion. The idea of this procedure is to let the robot hand
take a shape that is in accordance with the grasped ob-
ject. The Grasping Module controls the motor driver
and receives information about the sensors registration
from the sensory driver. It communicates upwards in
the model with the STM Module and the Commander
Module.

T-MPSOM: There are three instances of the mod-
ule that implements the T-MPSOM. All of them take
information about the configuration of the robot hand,
the wrist or the lifting mechanism (i.e. proprioceptic in-
formation) as input from the Motor Driver. The first
instance of the T-MPSOM takes as input the vectors
that represent the configuration of the wrist and the lift-
ing mechanism. This instance corresponds to the so-
matosensory areas in the human brain that receive pro-
prioceptic information and code for the localization and
orientation of the hand. The output from the first T-
MPSOM Module is conveyed to a second instance of
the T-MPSOM Module. The second instance of the T-
MPSOM Module also receives as input the vector that
represents the current configuration of the robot hand.
This instance corresponds to the somatosensory areas in
the human brain that receive proprioceptic information
about and code for the localizations and orientations of
the hand and the fingers. The second instance of the T-
MPSOM Module conveys its output to a third instance
of the T-MPSOM Module that in addition takes as input
a vector that represents the current state of the tactile

sensors from the Sensory Driver. The result of this chain
of recoding is to make the final activity depend on all
the joint angles as well as the sensor response. This es-
tablishes a code that depends on the three dimensional
shape of the grasped object during a single grasp. This
instance corresponds to the somatosensory areas that in-
tegrate information from the proprioceptic submodality
with cutaneous information. The output from the third
T-MPSOM Module is conveyed to the STM Module.

Commander Module: This module takes care of the
exploration of the object by grasping it nine different
times, at two different heights and five different angles.
There is no profound thought behind the number of ex-
ploring grasps. We wanted to make use of the robot
hands ability to grasp the object at different heights and
at different wrist angles and so collect more information
about it than is possible with a single grasp. Our es-
timation, without any thorough investigation, were that
about nine grasps at two different heights and five differ-
ent wrist angles would be enough to make a reasonable
use of the robot hands capacity. The exploration of the
objects in this way emulates the manipulation done by a
human being when trying to identify an object by hap-
tic exploration. This is done by relocation of the object
in the hand and at the same time collecting tactile in-
formation. This is implemented in the model by letting
the Grasping Module receive instructions about at what
wrist angle and at what height the grasping movements
should take place. The Commander Module receives sig-
nals from the Grasping Module about whether the grasp-
ing movement is completed or not. After the completion
of nine grasps the Commander Module decides that the
exploration is completed. This module corresponds to
areas in the frontal lobes.

STM (Short-Term Memory) Module: The output
from the third T-MPSOM Module is in every iteration
conveyed to the STM Module where it is superimposed
during the whole exploration of an object. In this way
the tactile and proprioceptic information from the whole
exploration of an object is integrated into a single code.
The sensory information of a haptically explored object
should, in some form, be temporarily stored in the brain
before the recognition of the object can happen after
some active exploration.

SOM Module: The matrix that represents the sen-
sory information from the completed exploration is used
as input to a module that implements a Self-organizing
Map (SOM) (Kohonen, 1988, 1990, 2001). The SOM
Module has 225 neurons in the models. This module
corresponds to recognition areas in the inferior temporal
lobe.
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Figure 4: The model of haptic perception using the T-

MPSOM model.

6. Grasping Tests

To simplify, the tactile and proprioceptic information
from the explorations of the test/training objects, pre-
sented in table 1, were written to files. The hap-
tic systems carried out 5 explorations of each of the
test/training objects, i.e. in total 30 explorations, to
create a test/training set. The models were trained in
two phases as explained below. The reason for this was
to avoid a lot of programming when adjusting the sys-
tem to work with explorations read from files. Both
models were trained with randomly chosen explorations
from the test/training set for, in total, 5000 iterations.
This training phase was done to let the three instances
of T-MPSOMs in a model organize. Following this the
model was exposed to each example of the training set,
i.e. each of the 6 different objects were explored 5 times,
i.e. in total 30 times and the output from the STM
Module were written to files. The resulting sets of 30
files were then used as training/test sets for the mod-
els SOM Modules. The SOM Modules of the models
were trained with 1000 randomly chosen samples from
these training/test sets. Finally the trained models were
tested with each of the 30 samples in these training/test
sets.

7. Results

The grasping tests with the model that used the T-
MPSOM variant with multiplied activations (Fig. 5A)

gave that the model was capable of categorization of the
objects according to shape, i.e. the cylinders, the spheres
and the blocks were categorized in different parts of the
SOM. This model was also capable of separating the in-
dividual objects in the training/test set from each other,
with one exception. The exception was that a boccia
sphere was mistaken as a boule sphere. We have carried
out some experiments were we varied the relationship
between input vectors and the size of the T-MPSOMs
in x direction and y direction. We found that when the
relationship between the numbers of elements in input
vector a and the number of neurons in the y direction
was similar to the relationship between the number of el-
ements in input vector b and the number of neurons in x
direction the performance was superior. The reason for
this is probably that the activity is otherwise smeared
out in a destructive way. We also found that the mod-
els worked best if the sigma of the Arbor functions were
kept small. The three instances of the T-MPSOM used
25, 90 and 1058 neurons and the SOM used 225 neurons.

The grasping test with the model that used the T-
MPSOM variant with added activations (Fig. 5B) went
out slightly worse than the previous model. However, it
performed quite well. The reason for adding the acti-
vations instead of multiplying them was that it yields a
model with increased biological plausibility.

This model was able to categorize the objects accord-
ing to shape with one exception. The exception was that
the boccia sphere was confused with the cylinder. Unlike
the model with T-MPSOMs that multiplies the activa-
tions, this model was not able to discriminate between
objects within the same shape category. It might be
that the slightly worse performance of this second model
could be improved if neural networks containing more
neurons were used. Another thing that perhaps would
improve the performance is the use of softmax activity.
However, this needs further investigation.

8. Discussion

We have designed and implemented two working haptic
models based on the T-MPSOM neural network together
with the Lucs Haptic Hand II. The models are based on
knowledge about the neurophysiology of the human hap-
tic system (see section 2). The two models differ only in
that the activity of a neuron is calculated by multiply-
ing the activities corresponding to the respective input
in one of them, whereas in the other model theses activ-
ities are summed. The latter yields a more biologically
plausible model. The models consist of a number of soft-
ware modules that correspond to different systems in the
brain. There are modules corresponding to the motor ar-
eas, the frontal executive areas, the recognition areas in
the inferior temporal lobe and the short-term memory.
In addition, the T-MPSOMs correspond to areas that
code for proprioceptic information and to an area that



Table 1: The test objects used with the three haptic models for the LUCS Haptic Hand II

Object Material Size (mm) Size (mm) Size (mm)
Boccia Plastic Diameter = 72 - -
Boule Metal Diameter = 82 - -

Cylinder Hard Board Diameter = 62 Height = 121 -
Metal Cylinder Metal Diameter = 75 Height = 109 -

Block 1 Wood Height = 110 Length = 50 Width = 50
Block 2 Wood Height = 110 Length = 58 Width = 50

Figure 5: A. Results with the model that uses the variant

of the T-MPSOM that multiplies the activations. B. Results

with the model that uses the variant of the T-MPSOM that

adds the activations. The images show the centers of activity

in the SOM during the testing. Both of the models are, more

or less, able to categorize the test objects according to shape

and the first model identified most of the individual objects.

integrate proprioceptic and cutaneous information.
Both models were able to categorize the test objects

according to shape. The model that used T-MPSOMs
that multiplied the activities worked best. This model
is able to categorize the test objects according to shape,
as well as to identify individual objects, with one ex-
ception. The exception was that once it categorized a
boccia sphere as a boule sphere. The capacities of the
models, at least the one that used T-MPSOMs that mul-
tiplies the activations should be comparable to that of
a human being. If the T-MPSOM model that adds the
activations had used a greater number of neurons in the
T-MPSOM neural networks it would probably not have
made mistakes in any case. However, since we did not
carry out these computationally heavy simulations this
has to be investigated further. With a hardware im-
plementation of the model, a larger number of neurons
would be acceptable.

We also carried out several experiments in which we
replaced the SOM Module and the STM Module with a
SOM Module with leaky integrator neurons. The idea
was to obtain a haptic system consisting of artificial neu-
ral networks that self-organize in accordance with the
input in all its parts. These experiments did not yield
satisfying results.

In the near future we will investigate the potential of
the T-MPSOM neural network further, for example it
should be possible to generalize the idea to an arbitrary
number of input vectors. Another project for the future
is to study the interaction between haptics and vision.
This would be interesting because these modalities in-
teract to a considerable extent (Castiello, 2005).
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