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Abstract— We have implemented four bio-inspired self-
organizing haptic systems based on proprioception on a 12
d.o.f. anthropomorphic robot hand. The four systems differ in
the kind of self-organizing neural network used for clustering.
For the mapping of the explored objects, one system uses a Self-
Organizing Map (SOM), one uses a Growing Cell Structure
(GCS), one uses a Growing Cell Structure with Deletion of
Neurons (GCS-DN) and one uses a Growing Grid (GG). The
systems were trained and tested with 10 different objects
of different sizes from two different shape categories. The
generalization abilities of the systems were tested with 6 new
objects. The systems showed good performance with the objects
from both the training set as well as in the generalization
experiments, i.e. they mapped the objects according to shape
and size and discriminated individual objects. The GCS-DN
system managed to evolve disconnected networks representing
different clusters in the input space (small cylinders, large
cylinders, small blocks, large blocks), and the generalization
samples activated neurons in a proper subnetwork in all but
one case.

I. INTRODUCTION

When designing a neural network based self-organizing
perception system a natural question comes up, namely what
kinds of neural network architectures are most suitable to
use. A common choice is the self-organizing map (SOM)
[18] that we have used in previous work. This is often a
very good choice but it suffers from some limitations, e.g.
the topological structure is fixed and the number of neurons
in the neural network has to be preset by the system designer.
Other limitations are that parameters like the learning rate,
the initial neighbourhood size and the decreasing rate of
the neighbourhood size also have to be set manually by the
designer. To address these limitations we have explored and
compared three alternative neural network architectures that
avoid some or all of these problems and compared them with
the SOM in the context of a proprioception based haptic
system. These alternative neural network architectures are
the Growing Cell Structures (GCS) and the Growing Cell
Structures with Deletion of Neurons (GCS-DN) [3][5], and
the Growing Grid (GG) [4].

The choice of a haptic perception system as the context
for these explorations is due to our extensive experience
in this area with investigations of haptic size perception
systems [7][8][9][10], of haptic shape perception systems
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[11][12][13][14], of proprioception based haptic shape/size
perception systems [15], and of haptic texture/hardness per-
ception systems [17]. We also have experience in the use of
GCS [6] and we have access to a suitable robot platform
consisting of an anthropomorphic robot hand, the LUCS
Haptic Hand III [16] which has been employed in the
experiments for this paper. However, our findings should
be equally applicable in systems mimicking other sensory
modalities.

The LUCS Haptic Hand III is a five fingered 12 dof
anthropomorphic robot hand with 11 proprioceptive sensors
(Fig. 1). The wrist can be flexed/extended. The thumb has
two and the other fingers have three phalanges. The thumb
can be adducted/abducted and separately flexed/extended in
the proximal and the distal joints. The other fingers can be
separately flexed/extended in their proximal joints whereas
the middle and the distal joints are flexed/extended together.
This is similar to the human hand. The phalanges are made
of plastic pipe segments and the force transmission from
the actuators in the forearm are handled by tendons inside
the phalanges. All fingers, except the thumb, are mounted
directly on the palm. The thumb is mounted on a RC servo,
which enables the adduction/abduction. This RC servo is
mounted proximally on the palm. Internal potentiometers
in the actuators are used as proprioceptive sensors. The
resistances of these potentiometers are proportional to the
angles of the different joints.

This paper compares four similar bio-inspired haptic
size/shape perception systems based on proprioception and
the anthropomorphic robot hand LUCS Haptic Hand III. The
systems differ in one respect, namely in the kind of self-
organizing neural network employed to cluster the input. The
first system uses the SOM, the second uses the GCS, the third
uses the GCS-DN and the fourth uses the GG.

II. SELF-ORGANIZING ANNS

A. Self-Organizing Map

The SOM consists of aI × J grid of neurons with a
fixed number of neurons and a fixed topology. Each neuron
nij is associated with a weight vectorwij ∈ Rn. During
adaptation the weight vectors for the neurons are adjusted to
a degree which is determined by a neighbourhood function
Nijc(t) with a size that decreases with time. The adaptation
strengthα(t) also decreases with time. The SOM variant
used in our experiments is a dot product SOM with Gaussian
neighbourhood. The adaptation algorithm works as follows:



Fig. 1. The LUCS Haptic Hand III while holding a pen. The five-fingered
12 dof robot hand is closely modelled after the human hand with respect to
size and the proportions between its parts. The actuators ofthe robot hand
are located in the forearm, which can also be seen in the figure, and tendons
are used for force transmission. The robot hand is equipped with a flexible
wrist. Each finger can be separately flexed/extended in the proximal joint,
whereas the medial and distal joints are flexed/extended together similar to
human fingers. The thumb can be adducted/abducted and it has aproximal
and a distal phalange that can be separately flexed/extended. Variable
potentiometers internal to the actuators are used as proprioceptive sensors,
which are scanned with a MAX396CPI multiplexor chip and digitalized
using a NiDaq 6008 (National Instruments). The NiDaq 6008 converts
multiple analog input signals to digital signals, which areconveyed to the
computer via a USB-port. The actuators of the LUCS Haptic Hand III are
controlled via a SSC-32 (Lynxmotion Inc.).

At time t each neuronnij receives an input vectorx(t) ∈ Rn.

The neuronc associated with the weight vectorwc(t) most
similar to the input vectorx(t) is selected:

c = arg maxc{||x(t)wc(t)||} (1)

The weight vectorswij of the neuronsnij are adapted
according to:

wij(t + 1) = wij(t) + α(t)Nijc(t) [x(t) − wij(t)] (2)

where0 ≤ α(t) ≤ 1 is the adaptation strength withα(t) → 0
when t → ∞ and the neighbourhood functionNijc(t) is a
Gaussian function decreasing with time.

B. Growing Cell Structures

The GCS has a variable number of neurons and a
k-dimensional topology wherek can be arbitrarily chosen.
The adaptation of a weight vector in the GCS is done in
a similar way as in the SOM, but the adaptation strength
is constant over time and only the best matching unit and
its direct topological neighbours are adapted. The GCS
estimates the probability density functionp(x) of the input
space by the aid of local signal counters that keep track of
the relative frequencies of input signals gathered by each
neuron. These estimates are used to indicate proper locations

to insert new neurons. The insertion of new neurons by
this method will result in a smoothing out of the relative
frequencies between different neurons. The advantages
of this approach is that the topology of the network will
self-organize to fit the input space, the proper number of
neurons for the network will be automatically determined
and the learning rate and neighbourhood size parameters are
constant over time. The basic building block and also the
initial configuration of the GCS is ak-dimensional simplex.
Such a simplex is fork = 2 a triangle. The variant of
the GCS algorithm used in our experiments works as follows:

The network is initialized to contain k + 1 neurons with
weight vectors wi ∈ Rn randomly chosen. The neurons are
connected so that ak-dimensional simplex is formed.

At time stept an input vectorx(t) ∈ Rn activates a winner
neuronc for which the following is valid:

c = arg minc{||x(t) − wc(t)||} (3)

where‖ · ‖ is the Euclidean distance,
and the squared distance between the input vector and the
weight vector of the winner neuronc is added to a local error
variableEc:

∆Ec = ||x(t) − wc(t)||
2. (4)

The weight vectors are updated by fractionsεb and εn

respectively according to:

∆wc(t) = εb(x(t) − wc(t)) (5)

∀i ∈ Nc : ∆wi(t) = εn(x(t) − wi(t)), (6)

whereNc is the set of direct topological neighbours ofc.

A neuron is inserted if the number of input vectors that
have been generated so far is an integer multiple of a
parameterλ. This is done by finding the neuronq with the
largest accumulated error and the neuronf among its direct
topological neighbours which has the weight vector with
the longest distance from the weight vector of the neuron
q, insert the new neuronr in between, remove the earlier
connection(q, f) and connectr with q and f and with all
direct topological neighbours that are common forq and
f . The weight vector forr is interpolated from the weight
vectors forq andf :

wr = (wq + wf )/2. (7)

The local error counters for all neighbours tor are decreased
by a fractionα that depends on the number of neighbours
of r:

∀i ∈ Nr : ∆Ei = (−α/|Nr|) · Ei, (8)

The error variable forr is set to the average of its neighbours:



Er = (1/|Nr|) ·
∑

ι∈Nr

Ei, (9)

and then the error variables of all neurons are decreased:

∀i : ∆Ei = −βEi (10)

In GCS-DN a neuron (or several if that is necessary
to keep a consistent topological structure ofk-dimensional
simplices) is deleted, provided that the network has reached
its maximum size, at the same occasions new neurons are
inserted. Thereafter new neurons are inserted again according
to the algorithm described above until the network has
reached its maximum size again. This process is repeated
a preset number of times, in our experiments 250 times.

C. Growing Grid

The GG can be seen as an incremental variant of the
SOM. It consists of anI × J grid of neurons with a
fixed topology but with I and J increasing with time
as new rows and columns are inserted. In addition to a
weight vectorwij ∈ Rn each neuronnij also has a local
counter variableT to estimate where to insert new rows
or columns of neurons in the grid. The self-organizing
process of a GG is divided into two phases: a growth phase
and a fine-tuning phase. During the growth phase the grid
grows by insertion of new rows and columns until the
wanted size of the network has been achieved. During the
fine-tuning phase, the network size does not change and
a decreasing adaptation strengthα(t) is used. The size of
the neighbourhood is not decreasing with time. Instead the
network is growing with a constant neighbourhood size
and therefore the fraction of all neurons that are adapted
decreases over time. The variant of the GG algorithm used
in our experiments is described below:

Growth Phase:

Initialize the network to contain2 × 2 neurons with weight
vectors randomly chosen.

At time t an input vectorx(t) ∈ Rn is generated and
received by each neuronnij in the grid.

The neuronc associated with the weight vectorwc(t) most
similar to the input vectorx(t) is selected:

c = arg maxc{||x(t)wc(t)||} (11)

Increment the local counter variableTc for c:

Tc = Tc + 1 (12)

The weight vectorswij of the neuronsnij are adapted
according to:

wij(t + 1) = wij(t) + αNijc [x(t) − wij(t)] (13)

where 0 ≤ α ≤ 1 is the adaptation strength and the
neighbourhood functionNijc is a Gaussian function. Notice
that α andNijc are not functions oft though.

A new row or column is inserted if the number of input
vectors that have been generated so far is an integer multiple
λ of the current number of neurons in the grid. This is
done by finding the neuronq with the largest value of the
local counter variableT and the neuronf among its direct
topological neighbours which has the weight vector with the
longest distance from the weight vector of the neuronq.
Depending on the relative positions ofq and f a new row
or a new column is inserted.

If q and f are in the same row, then a new column
is inserted between the columns ofq and f . The weight
vectors for the new neurons are interpolated from their direct
neighbours in the same row.

If q and f are in the same column, then a new row is
inserted between the rows ofq andf . The weight vectors for
the new neurons are interpolated from their direct neighbours
in the same column.

Adjust I or J to reflect the new numbers of rows and
columns in the grid.
Reset all local counter values:

Tnij
= 0 (14)

If desired network size has not been reached, then go to
step 2, i.e. generate a new input vector.

Fine-tuning Phase:

This phase is similar to the growth phase but the adaptation
strengthα(t) is now decreasing with time and no insertions
of new rows or columns are done. This phase stops after a
preset number of iterations.

III. MODELS

The models differ in one respect, namely the kind of self-
organizing neural network employed. The models consist of
the LUCS Haptic Hand III, sensory and motor drivers, a Self-
Organizing Neural Network (SO-ANN) and a commander
module that executes the grasping movements (Fig. 2).
The sensory driver scans the proprioceptive sensors when
requested to do so by the commander module, while the
motor driver translates high level motor commands from the
commander module to commands appropriate for the robot
hands servo controller board. When the commander executes
a grasp, and the robot hand is fully closed around the object,
the sensory driver scans the 11 proprioceptive sensors and
outputs an eleven-elements vector to the SO-ANN, which is
adapted.

The SOM model uses a 225 neurons dot product SOM
with plane topology, which uses softmax activation with the
softmax exponent equal to 10 [1]. It is trained by 2000
iterations.

The GCS model grows, by inserting a new neuron every
19th iteration, until a size of 225 neurons has been reached.
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Fig. 2. Schematic depiction of the models. The commander module executes
the grasps by sending high-level motor commands to the motordriver, which
translates and conveys the information to the servo controller board of the
robot hand. When the robot hand has become fully closed the commander
module request a scanning of the 11 proprioceptive sensors of the robot
hand. The sensory information is conveyed as a vector to a Self-Organizing
ANN (SO-ANN). The SO-ANN is a Self-Organizing-Map, or a Growing Cell
Structures, or a Growing Cell Structures with Deletion of Neurons, or a
Growing Grid.

The GCS-DN model grows until a size of 225 neurons
has been reached, also by inserting a new neuron every
19th iteration, then the deletion/insertion process described in
section 2.2 is repeated 250 times. Finally this yields a number
of disconnected networks with altogether 225 neurons.

The GG model grows by inserting a new row or column
each time the number of time stepst since the previous
insertion equals a multipleλ of the current grid size, i.e.
until t = λIJ with λ = 19. The growth phase lasts until a
minimum grid size of 225 neurons has been reached, then
the model runs in fine tuning mode for 1000 iterations.

IV. TESTING THE MODELS

We have trained the models with 10 objects (see Table 1
objects a-j). These objects are either cylinder shaped or block
shaped. There are five objects of each shape category. All
objects are sufficiently high to be of a non-variable shape in
those parts grasped by the robot hand, e.g. a bottle is grasped
on the part of equal diameter below the bottle neck.

During the grasping tests the test objects were placed on
a table with the open robot hand around them. If the objects
were block shaped we always placed the longest side against
the palmar side of the robot hand.

To simplify the testing procedure each object was grasped
5 times by the robot hand, i.e. in total 50 grasps were carried
out, and the sensory information were written to a file. Then

the SO-ANN were trained and tested with this set of 50
samples. The training phase for the SOM model lasted for
2000 iterations. The GCS model was trained until a network
size of 225 neurons was reached. The GCS-DN model was
trained until a network size of 225 neurons was reached and
then the insertion/deletion process described in section 2.2
was repeated 250 times. The GG model was trained with a
growth phase which lasted until the minimal network size
reached 225 neurons, and then for 1000 iterations in fine
tuning mode.

Each fully trained model was tested with the original
training set and in addition with three new block shaped
and three new cylinder shaped objects of variable sizes (see
Table 1, objects 1-6).

V. RESULTS

The results are depicted in Fig. 3. Fig 3A shows the
centres of activation in the SOM in the fully trained SOM
model when tested with the training set and the test set.
The SOM seems to be organized according to shape. Four
groups of objects can be distinguished in the map, large
block shapes, small block shapes, large cylindrical shapes
and small cylindrical shapes. The SOM also seems to be
organized in a clockwise manner according to size. The result
of the generalization experiment shows that all test objects
are mapped so that they are ordered according to size in the
same way as the objects in the training set, and that they are
also correctly mapped according to shape. The activations
in the SOM also indicate that it is possible to discriminate
individual object of the training set to a large extent and this
is also true for the test objects, since each of the test objects
is also mapped so that it can be identified as the most similar
object of the training set. The results with the SOM model
are thoroughly described in [15].

Fig 3B shows the centres of activation in the GCS in
the fully trained GCS model. Only the part of the GCS
which is activated by some object is shown in the figure.
This model produces similar results as the SOM model, i.e.
the organization of the GCS separates large block shapes,
small block shapes, large cylinder shapes and small cylinder
shapes. The GCS is also organized according to size with the
smallest objects represented uppermost in the GCS and the
largest in the lowermost part. The ability for discrimination
of individual objects is approximately similar as that for the
SOM model. Also this model activates neurons at proper
locations when fed with the objects of the generalization
test set.

Fig 3C shows the final network structure of the fully
trained GCS-DN model. As can be seen this network struc-
ture consists of several disconnected subnetworks. This is
due to the removal of neurons that represent parts of the
input space with a low value of the probability density
function. As a result, such a network tends to self-organize
into subnetworks that represent different clusters in the input
space. This is also what happened in our experiments. As
indicated in the figure one or more subnetworks can be seen
as representing one of the categories large block shapes,
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Fig. 3. The test results of the four models. A: The SOM model is organized according to shape and size. Groups of large blocks, small blocks, large
cylinders and small cylinders can be distinguished. The activations tend to be located according to size of the objects in a clockwise manner. Individual
objects can be discriminated to a large extent. B: The GCS model produces similar results as the SOM model, i.e. it is organized according to shape and
size. The GCS model separate large blocks, small blocks, large cylinders and small cylinders, and the objects are represented according to size with the
smallest objects uppermost and the largest lowermost in theGCS. Also individual objects can be discriminated to a largeextent. C: The GCS-DN model
self-organized into sub networks, where one or more sub networks represent the categories large blocks, small blocks, large cylinders and small cylinders.
D: The GG model separate large blocks, small blocks, large cylinders and small cylinders, and the grid is organized according to size. Individual objects
can be discriminated to a large extent. The 6 test objects (indicated with the numbers 1-6) not included in the training set activated neurons at proper
locations perfectly in all models but the GCS-DN model. In that model object 1 triggered activation in the wrong subnetwork. (See Table 1 for the meaning
of the labels).



TABLE I

The 16 objects used in the experiments with the four models. The objects a-j were used both for training and testing, whereas the objects 1-6 were used

in the generalization tests.

Label Object Shape Size (mm) Size (mm)
a Tube Cylinder Diameter = 58 -
b Beer Can Cylinder Diameter = 64 -
c Wood Block Block Length = 75 Width = 47
d Wine Bottle Cylinder Diameter = 70 -
e Plastic Block 1 Block Length = 63 Width = 63
f Plastic Bottle 2 Cylinder Diameter = 72 -
g Olive Oil Bottle Block Length = 65 Width = 65
h Plastic Bottle 1 Cylinder Diameter = 80 -
i Plastic Block 2 Block Length = 80 Width = 63
j Coffee Package Block Length = 97 Width = 67
1 Card Board Package 1 Block Length = 77 Width = 66
2 Card Board Package 2 Block Length = 84 Width = 62
3 Card Board Package 3 Block Length = 95 Width = 62
4 Spice Bottle Cylinder Diameter = 57 -
5 Treacle Bottle Cylinder Diameter = 63 -
6 Plastic Bottle 3 Cylinder Diameter = 79 -

small block shapes, large cylinder shapes and small cylinder
shapes. The objects of the generalization test set activate
neurons in the proper subnetworks except in one case,
namely the test object 1 is a large block but is identified
as a large cylinder.

Fig 3D shows the centres of activation in the GG in the
fully trained GG model. This model produces similar results
as the SOM model and the GCS model, i.e. the organization
of the GG separates large block shapes, small block shapes,
large cylinder shapes and small cylinder shapes. As indicated
in the figure the GG is also organized according to size. The
ability for discrimination of individual objects is approxi-
mately similar as that for the SOM model. All 6 objects
of the generalization test set are mapped so that they can
be associated with the correct shape category and identified
with the most similar object of the training set.

VI. DISCUSSION

We have experimented with four self-organizing models
for clustering of proprioceptive data collected by our an-
thropomorphic robot hand, the LUCS Haptic Hand III. All
four models were able to cluster the sensory information
according to shape, and all four of them resulted in networks
which preserves the size ordering of the training objects.
The models have proven to have an excellent generalization
capacity. This is clearly illustrated in the categorization of the
6 new objects that offered different characteristics of shape
and size.

The SOM, the GCS and the GG performed at approxi-
mately a similar level. This could be an argument for using
the alternative neural network architechtures GCS and GG
instead of the SOM, because that reduces the number of
parameters that have to be set. According to Fritzke [2] the
performance of the GCS is actually slightly better than the
performance of the SOM in complex and realistic problems.
The results of our experiments in [6] also points in that
direction.

The GCS and the GCS-DN also have the virtue to get

organized into networks whose topology reflect the probabil-
ity density function of the input space. The GCS-DN is es-
pecielly interesting since it has the property to automatically
form disconnected subnetworks that represent clusters in the
input space. It should be possible to implement an online
version of the GCS-DN algorithm that never stops and that
should result in a set of networks, that reflects the probability
density function of the input space, which changes if the
probability density function happens to be non-stationary. In
other words, if the probability density function of the input
space changed then the set of subnetworks would change by
the deletion of some subnetworks and the split, followed by
growth of others.

It should be mentioned that the graphical presentation of
GCS and GCS-DN could be improved. Fritzke [3] suggests
a method on how to embed these kinds of networks in the
plane for better visualizations. In this method a physical
model is maintained where the neurons are considered as
discs influenced by attractive and repulsive forces.

The success with the GCS, the GCS-DN and the GG
suggests an increased focus on our part on these kinds of
self-organizing neural networks. The advantage of getting
rid of several parameter settings like network size, learning
rate and neighbourhood settings can be important to succeed
with more complex cognitive models with several coupled
neural networks at multiple levels. To be forced to set all the
parameters in a good way for all included neural networks
with complex dependencies in such a model could prove to
be overwhelming.

In the future we plan to increase the use of neural networks
like GCS and GG as an alternative to the SOM in our
haptic systems. By doing so we will reduce the number of
parameters that have to be set explicitly and this should yield
more robust systems.
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