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Abstract—We have implemented four bio-inspired self-
organizing haptic systems based on proprioception on a 12
d.o.f. anthropomorphic robot hand. The four systems differin
the kind of self-organizing neural network used for clusteing.
For the mapping of the explored objects, one system uses a el
Organizing Map (SOM), one uses a Growing Cell Structure
(GCS), one uses a Growing Cell Structure with Deletion of
Neurons (GCS-DN) and one uses a Growing Grid (GG). The
systems were trained and tested with 10 different objects
of different sizes from two different shape categories. The
generalization abilities of the systems were tested with 6aw
objects. The systems showed good performance with the objsc
from both the training set as well as in the generalization
experiments, i.e. they mapped the objects according to shap
and size and discriminated individual objects. The GCS-DN
system managed to evolve disconnected networks represargi
different clusters in the input space (small cylinders, lage
cylinders, small blocks, large blocks), and the generalizaon
samples activated neurons in a proper subnetwork in all but
one case.

. INTRODUCTION

[11][12][13][14], of proprioception based haptic shajiegs
perception systems [15], and of haptic texture/hardness pe
ception systems [17]. We also have experience in the use of
GCS [6] and we have access to a suitable robot platform
consisting of an anthropomorphic robot hand, the LUCS
Haptic Hand 1ll [16] which has been employed in the
experiments for this paper. However, our findings should
be equally applicable in systems mimicking other sensory
modalities.

The LUCS Haptic Hand Il is a five fingered 12 dof
anthropomorphic robot hand with 11 proprioceptive sensors
(Fig. 1). The wrist can be flexed/extended. The thumb has
two and the other fingers have three phalanges. The thumb
can be adducted/abducted and separately flexed/extended in
the proximal and the distal joints. The other fingers can be
separately flexed/extended in their proximal joints wherea
the middle and the distal joints are flexed/extended togethe
This is similar to the human hand. The phalanges are made
of plastic pipe segments and the force transmission from

When designing a neural network based self-organizinge actuators in the forearm are handled by tendons inside

perception system a natural question comes up, namely Whag phalanges. All fingers, except the thumb, are mounted
kinds of neural network architectures are most suitable tgrectly on the palm. The thumb is mounted on a RC servo,
use. A common choice is the self-organizing map (SOMyhich enables the adduction/abduction. This RC servo is
[18] that we have used in previous work. This is often gnounted proximally on the palm. Internal potentiometers
very good choice but it suffers from some limitations, €.gin the actuators are used as proprioceptive sensors. The
the topological structure is fixed and the number of neurongsistances of these potentiometers are proportionaleo th
in the neural network has to be preset by the system deS|gn§,ﬁg|es of the different joints.

Other limitations are that parameters like the learning,rat This paper compares four similar bio-inspired haptic
the initial neighbourhood size and the decreasing rate gfze/shape perception systems based on proprioception and
the neighbourhood size also have to be set manually by thes anthropomorphic robot hand LUCS Haptic Hand I11. The
designer. To address these limitations we have explored aé‘)?stems differ in one respect, namely in the kind of self-
compared three alternative neural network architecturat t organizing neural network employed to cluster the input Th
avoid some or all of these problems and compared them wihst system uses the SOM, the second uses the GCS, the third

the SOM in the context of a proprioception based haptigses the GCS-DN and the fourth uses the GG.
system. These alternative neural network architectures ar

the Growing Cell Structures (GCS) and the Growing Cell
Structures with Deletion of Neurons (GCS-DN) [3][5], and
the Growing Grid (GG) [4].

The choice of a haptic perception system as the contextThe SOM consists of & x J grid of neurons with a
for these explorations is due to our extensive experiengged number of neurons and a fixed topology. Each neuron
in this area with investigations of haptic size perceptiomlij is associated with a weight vectar;; € R". During
systems [7][8][9][10], of haptic shape perception systemgdaptation the weight vectors for the neurons are adjusted t
2 degree which is determined by a neighbourhood function
f\lijc(t) with a size that decreases with time. The adaptation

Il. SELF-ORGANIZING ANNS
A. Self-Organizing Map
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strengtha(t) also decreases with time. The SOM variant
used in our experiments is a dot product SOM with Gaussian
neighbourhood. The adaptation algorithm works as follows:



to insert new neurons. The insertion of new neurons by
this method will result in a smoothing out of the relative
frequencies between different neurons. The advantages
of this approach is that the topology of the network will
self-organize to fit the input space, the proper number of
neurons for the network will be automatically determined
and the learning rate and neighbourhood size parameters are
constant over time. The basic building block and also the
initial configuration of the GCS is &-dimensional simplex.
Such a simplex is fork = 2 a triangle. The variant of
the GCS algorithm used in our experiments works as follows:

The network is initialized to contain k + 1 neurons with
weight vectors we R™ randomly chosen. The neurons are
connected so that &dimensional simplex is formed.

At time stept an input vectorz(t) € R™ activates a winner

Fig. 1. The LUCS Haptic Hand Ill while holding a pen. The five-fingeredN€Uronc for which the following is valid:

12 dof robot hand is closely modelled after the human hanh wipect to

size and the proportions between its parts. The actuatotheofobot hand _ ; _

are located in the forearm, which can also be seen in the figamd tendons c=arg mII’L{||x(t) We (t>| |} ()
are used for force transmission. The robot hand is equippithl avflexible . . .

wrist. Each finger can be separately flexed/extended in tbeimpal joint, Where” ’ ” is the EL_IC“dean distance, .

whereas the medial and distal joints are flexed/extendeettieg similar to ~ and the squared distance between the input vector and the
human fingers. The thumb can be adducted/abducted and it pasxanal We|ght vector of the winner neuranis added to a local error

and a distal phalange that can be separately flexed/extendladable iable E.-

potentiometers internal to the actuators are used as pomaptive sensors, variaple L

which are scanned with a MAX396CPI multiplexor chip and tdigied

using a NiDag 6008 (National Instruments). The NiDag 6008&veots AE, = ||x(t) _ wc(t)||2. (4)
multiple analog input signals to digital signals, which azenveyed to the
computer via a USB-port. The actuators of the LUCS Haptic dtHHhare

controlled via a SSC-32 (Lynxmotion Inc.). The weight vectors are updated by fractions and ¢,

respectively according to:

Attime ¢ each neurom,; receives an input vectar(t) € R". Awe(t) = ep(a(t) — we(t)) (5)

The neurorc associated with the weight vecter.(t) most , ) e .
similar to the input vector:(¢) is selected: Vi € Ne: Awi(t) = en((t) — wilt)), )

where N, is the set of direct topological neighbours of
c = arg max{||z(t)w.(t)|[} 6y

The weight vectorsw;; of the neuronsn;; are adapted
according to:

A neuron is inserted if the number of input vectors that
have been generated so far is an integer multiple of a
parameter\. This is done by finding the neuranwith the
largest accumulated error and the neufoamong its direct
wij(t+ 1) = wi; (t) + a(t)Nyje(t) [z(t) —ws;(t)]  (2) topological neighbours which has the weight vector with
the longest distance from the weight vector of the neuron
q, insert the new neuron in between, remove the earlier
connection(q, f) and connect with ¢ and f and with all
direct topological neighbours that are common forand

B. Growing Cell Structures f. The weight vector for is interpolated from the weight

The GCS has a variable number of neurons and “Ectors forg and f:
k-dimensional topology wheré can be arbitrarily chosen.
The adaptation of a weight vector in the GCS is done in wr = (wg + wy)/2. (7)

a similar way as in the SOM, but the adaptation strengtfe ocal error counters for all neighbourstare decreased

is constant over time and only the best matching unit a a fractiona that depends on the number of neighbours
its direct topological neighbours are adapted. The GCg ,.

estimates the probability density functigiiz) of the input

space by the aid of local signal counters that keep track of Vi€ N, : AE; = (—a/|N,|) - E; ®)
the relative frequencies of input signals gathered by each ’

neuron. These estimates are used to indicate proper losatid'he error variable for is set to the average of its neighbours:

where0 < «a(t) < 1is the adaptation strength with(¢t) — 0
whent — oo and the neighbourhood functiaN;;.(t) is a
Gaussian function decreasing with time.



where 0 < o < 1 is the adaptation strength and the
E.=1/|N,|) - Z E;, (9) neighbourhood functiodV;;. is a Gaussian function. Notice
LENT that o and V;;. are not functions ot though.
and then the error variables of all neurons are decreased: . . i
A new row or column is inserted if the number of input
. A vectors that have been generated so far is an integer naultipl
Vi: AE; = -G (10) A of the current number of neurons in the grid. This is

In GCS-DN a neuron (or several if that is necessargone by finding the neurog with the largest value of the
to keep a consistent topological structurekeflimensional local counter variabld” and the neurorf among its direct
simplices) is deleted, provided that the network has resich¢opological neighbours which has the weight vector with the
its maximum size, at the same occasions new neurons do@gest distance from the weight vector of the neuron
inserted. Thereafter new neurons are inserted again dngordDepending on the relative positions gfand f a new row
to the algorithm described above until the network haer a new column is inserted.
reached its maximum size again. This process is repeatedf ¢ and f are in the same row, then a new column
a preset number of times, in our experiments 250 times. is inserted between the columns gfand f. The weight

) ) vectors for the new neurons are interpolated from theircdire
C. Growing Grid neighbours in the same row.

The GG can be seen as an incremental variant of thelf ¢ and f are in the same column, then a new row is
SOM. It consists of anl x J grid of neurons with a inserted between the rows @fandf. The weight vectors for
fixed topology but with7 and J increasing with time the new neurons are interpolated from their direct neightoou
as new rows and columns are inserted. In addition to ia the same column.
weight vectorw;; € R™ each neurom;; also has a local ~ Adjust I or J to reflect the new numbers of rows and
counter variableI' to estimate where to insert new rowscolumns in the grid.
or columns of neurons in the grid. The self-organizingReset all local counter values:
process of a GG is divided into two phases: a growth phase
and a fine-tuning phase. During the growth phase the grid Th,; =0 (14)
grows by_ insertion of new rows and Co!umns unt!l thﬁf desired network size has not been reached, then go to
v_vanted_5|ze of the network has b_een achieved. During trg(fep 2, i.e. generate a new input vector.
fine-tuning phase, the network size does not change and
a decr_easing adaptgtion strengit‘t? is u_sed._ The size of Fine-tuning Phase:
the neighbourhood is not decreasing with time. Instead the

network is growing with a constant neighbourhood siz&pig phase is similar to the growth phase but the adaptation
and therefore the fraction of all neurons that are adapt%‘?rengtha(t) is now decreasing with time and no insertions

decreases over time. The variant of the GG algorithm used now rows or columns are done. This phase stops after a
in our experiments is described below: preset number of iterations.

Growth Phase: Ill. MODELS
The models differ in one respect, namely the kind of self-
Initialize the network to contai2 x 2 neurons with weight organizing neural network employed. The models consist of
vectors randomly chosen. the LUCS Haptic Hand Ill, sensory and motor drivers, a Self-
Organizing Neural Network (SO-ANN) and a commander
At time ¢ an input vectorz(t) € R™ is generated and module that executes the grasping movements (Fig. 2).
received by each neuramn; in the grid. The sensory driver scans the proprioceptive sensors when
requested to do so by the commander module, while the
The neurorc associated with the weight vectar.(t) most motor driver translates high level motor commands from the

similar to the input vector:(t) is selected: commander module to commands appropriate for the robot
hands servo controller board. When the commander executes
¢ = arg max{||z(t)w.(t)||} (11) agrasp, and the robot hand is fully closed around the object,

the sensory driver scans the 11 proprioceptive sensors and
outputs an eleven-elements vector to the SO-ANN, which is
adapted.
Te=Tc+1 (12) The SOM model uses a 225 neurons dot product SOM
with plane topology, which uses softmax activation with the
softmax exponent equal to 10 [1]. It is trained by 2000
iterations.

The GCS model grows, by inserting a new neuron every
wi;(t+ 1) = wij(t) + aNgje [2(t) — wi;(t)] (13)  19th iteration, until a size of 225 neurons has been reached.

Increment the local counter variaklé for c:

The weight vectorsw;; of the neuronsn;; are adapted
according to:



the SO-ANN were trained and tested with this set of 50

samples. The training phase for the SOM model lasted for
2000 iterations. The GCS model was trained until a network
size of 225 neurons was reached. The GCS-DN model was
trained until a network size of 225 neurons was reached and

then the insertion/deletion process described in secti@n 2
Self-Organizing Commander was repeated 250 times. The GG model was trained with a
ANN growth phase which lasted until the minimal network size
(.\\oq& reached 225 neurons, and then for 1000 iterations in fine
Proprioceptive %@Q(({bo High level motor tuning mode. ] . o
information & commands Each fully trained model was tested with the original
training set and in addition with three new block shaped
and three new cylinder shaped objects of variable sizes (see
) ) Table 1, objects 1-6).
Sensory Driver Motor Driver
V. RESULTS
Sensor \\ / Servo positioning The results are depicted in Fig. 3. Fig 3A shows the
scanning commands centres of activation in the SOM in the fully trained SOM
Lucs Haptic model when tested with the training set and the test set.
Hand Il The SOM seems to be organized according to shape. Four
groups of objects can be distinguished in the map, large

block shapes, small block shapes, large cylindrical shapes
Fig. 2. Schematic depiction of the models. The commander moduatese and small cylindrical shapes. The SOM also seems to be
the grasps by sending high-level motor commands to the nditeer, which ~ organized in a clockwise manner according to size. Thetresul
translates and conveys the information to the servo cdetr@oard of the  of the generalization experiment shows that all test object
robot hand. When the robot hand has become fully closed thremamder . . .
module request a scanning of the 11 proprioceptive sensbtheorobot A€ mapped so that they are ordered according to size in the
hand. The sensory information is conveyed as a vector tofeCBganizing ~Same way as the objects in the training set, and that they are
ANN (SO-ANN). The SO-ANN is a Self-Organizing-Map, or a @gwCell  g|so correctly mapped according to shape. The activations
Structures, or a Growing Cell Structures with Deletion ofuMms, or a . N L . [
Growing Grid. in the SOM also indicate that it is possible to discriminate
individual object of the training set to a large extent anid th
is also true for the test objects, since each of the test tshjec
The GCS-DN model grows until a size of 225 neurongs also mapped so that it can be identified as the most similar
has been reached, also by inserting a new neuron evequect of the training set. The results with the SOM model
19th iteration, then the deletion/insertion process diesdin ~ are thoroughly described in [15].
section 2.2 is repeated 250 times. Finally this yields arermb Fig 3B shows the centres of activation in the GCS in
of disconnected networks with altogether 225 neurons. the fully trained GCS model. Only the part of the GCS
The GG model grows by inserting a new row or columnwhich is activated by some object is shown in the figure.
each time the number of time stepssince the previous This model produces similar results as the SOM model, i.e.
insertion equals a multiple. of the current grid size, i.e. the organization of the GCS separates large block shapes,
until ¢ = AIJ with A = 19. The growth phase lasts until a sSmall block shapes, large cylinder shapes and small cylinde
minimum grid size of 225 neurons has been reached, théhapes. The GCS is also organized according to size with the
the model runs in fine tuning mode for 1000 iterations. ~ Smallest objects represented uppermost in the GCS and the
largest in the lowermost part. The ability for discrimirpati
IV. TESTING THE MODELS of individual objects is approximately similar as that foet
We have trained the models with 10 objects (see Table SOM model. Also this model activates neurons at proper
objects a-j). These objects are either cylinder shapedoakbl locations when fed with the objects of the generalization
shaped. There are five objects of each shape category. #dbkt set.
objects are sufficiently high to be of a non-variable shape in Fig 3C shows the final network structure of the fully
those parts grasped by the robot hand, e.g. a bottle is gtaspmined GCS-DN model. As can be seen this network struc-
on the part of equal diameter below the bottle neck. ture consists of several disconnected subnetworks. This is
During the grasping tests the test objects were placed alwe to the removal of neurons that represent parts of the
a table with the open robot hand around them. If the objecisput space with a low value of the probability density
were block shaped we always placed the longest side agaifistction. As a result, such a network tends to self-organize
the palmar side of the robot hand. into subnetworks that represent different clusters in tipaii
To simplify the testing procedure each object was graspespace. This is also what happened in our experiments. As
5 times by the robot hand, i.e. in total 50 grasps were carriéddicated in the figure one or more subnetworks can be seen
out, and the sensory information were written to a file. Theas representing one of the categories large block shapes,
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Fig. 3. The test results of the four models. A: The SOM model is azgdnaccording to shape and size. Groups of large blocks, | dstwtks, large

cylinders and small cylinders can be distinguished. Thévatibns tend to be located according to size of the objetta tlockwise manner. Individual
objects can be discriminated to a large extent. B: The GCSeinm@duces similar results as the SOM model, i.e. it is orgeah according to shape and
size. The GCS model separate large blocks, small blockge leylinders and small cylinders, and the objects are regveel according to size with the
smallest objects uppermost and the largest lowermost ind8&. Also individual objects can be discriminated to a laggéent. C: The GCS-DN model
self-organized into sub networks, where one or more subanksnrepresent the categories large blocks, small blockgel cylinders and small cylinders.
D: The GG model separate large blocks, small blocks, largmdsgrs and small cylinders, and the grid is organized adiog to size. Individual objects
can be discriminated to a large extent. The 6 test objectiqéted with the numbers 1-6) not included in the training aetivated neurons at proper
locations perfectly in all models but the GCS-DN model. kt thodel object 1 triggered activation in the wrong subnekw¢See Table 1 for the meaning

of the labels).



TABLE |
The 16 objects used in the experiments with the four modhis.objects a-j were used both for training and testing, wagrhe objects 1-6 were used
in the generalization tests.

Label Object Shape Size (mm) Size (mm)
a Tube Cylinder | Diameter = 58 -
b Beer Can Cylinder | Diameter = 64 -
c Wood Block Block Length = 75 | Width = 47
d Wine Bottle Cylinder | Diameter = 70 -
e Plastic Block 1 Block Length = 63 | Width = 63
f Plastic Bottle 2 Cylinder | Diameter = 72 -
g Olive Oil Bottle Block Length = 65 | Width = 65
h Plastic Bottle 1 Cylinder | Diameter = 80 -
i Plastic Block 2 Block Length = 80 | Width = 63
j Coffee Package Block Length = 97 | Width = 67
1 Card Board Package 1 Block Length = 77 | Width = 66
2 Card Board Package 2 Block Length = 84 | Width = 62
3 Card Board Package 3 Block Length = 95 | Width = 62
4 Spice Bottle Cylinder | Diameter = 57 -
5 Treacle Bottle Cylinder | Diameter = 63 -
6 Plastic Bottle 3 Cylinder | Diameter = 79 -

small block shapes, large cylinder shapes and small cylinderganized into networks whose topology reflect the probabil
shapes. The objects of the generalization test set activatye density function of the input space. The GCS-DN is es-
neurons in the proper subnetworks except in one casgecielly interesting since it has the property to autonadiiic
namely the test object 1 is a large block but is identifiedlorm disconnected subnetworks that represent clustefsein t
as a large cylinder. input space. It should be possible to implement an online
Fig 3D shows the centres of activation in the GG in theversion of the GCS-DN algorithm that never stops and that
fully trained GG model. This model produces similar resultshould result in a set of networks, that reflects the prolgbil
as the SOM model and the GCS model, i.e. the organizatialensity function of the input space, which changes if the
of the GG separates large block shapes, small block shappsybability density function happens to be non-stationbry
large cylinder shapes and small cylinder shapes. As inglicatother words, if the probability density function of the inpu
in the figure the GG is also organized according to size. Thepace changed then the set of subnetworks would change by
ability for discrimination of individual objects is apprex the deletion of some subnetworks and the split, followed by
mately similar as that for the SOM model. All 6 objectsgrowth of others.
of the generalization test set are mapped so that they canlt should be mentioned that the graphical presentation of
be associated with the correct shape category and identifi&CS and GCS-DN could be improved. Fritzke [3] suggests

with the most similar object of the training set. a method on how to embed these kinds of networks in the
plane for better visualizations. In this method a physical
VI. DISCUSSION model is maintained where the neurons are considered as

We have experimented with four self-organizing model§/iScs influenced by atiractive and repulsive forces.
for clustering of proprioceptive data collected by our an- The success with the GCS, the GCS-DN and the GG
thropomorphic robot hand, the LUCS Haptic Hand 1. AllSuggests an increased focus on our part on these kinds of
four models were able to cluster the sensory informatiof€lf-organizing neural networks. The advantage of getting
according to shape, and all four of them resulted in networkdd of several parameter settings like network size, leagni
which preserves the size ordering of the training object$ate and neighbourhood settings can be important to succeed
The models have proven to have an excellent generalizati$fth more complex cognitive models with several coupled
capacity. This is clearly illustrated in the categorizatif the ~Neural networks at multiple levels. To be forced to set &l th
6 new objects that offered different characteristics ofpsha Parameters in a good way for all included neural networks
and size. with complex dependencies in such a model could prove to
The SOM, the GCS and the GG performed at approxi2€ overwhelming.
mately a similar level. This could be an argument for using N the future we plan to increase the use of neural networks
the alternative neural network architechtures GCS and Gtkeé GCS and GG as an alternative to the SOM in our
instead of the SOM, because that reduces the number ptic systems. By doing so we will reduce the number of
parameters that have to be set. According to Fritzke [2] thearameters that have to be set explicitly and this should yie
performance of the GCS is actually slightly better than thE0re robust systems.
performance of the SOM in complex and realistic problems.
The results of our experiments in [6] also points in that VII. ACKNOWLEDGMENTS
direction. We want to acknowledge the support from Stiftelsen
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