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Abstract—\We have experimented with a bio-inspired self- Edwards et al [4] have used a vinyl record player with the
organizing texture and hardness perception system which needle replaced with an artificial finger with an embedded
automatically learns to associate the representations ohe two microphone to quantify textural features by using a group of

submodalities with each other. To this end we have developed - g .
a microphone based texture sensor and a hardness sensor that manufactured discs with different textural patterns. Casnp

measures the compression of the material at a constant prage. ~ and Bajcsy [3] explored haptic Exploratory Procedures JEPs
The system is based on a novel variant of the Self-Organizing based on human haptic EPs proposed by Lederman and
Map (SOM), called Associative Self-Organizing Map (A-SOM)  Klatzky, among them an EP for hardness exploration in
The A-SOM both develops a representation of its input space \yhich the applied force is measured for a given displacement

and learns to associate this with the activity in an externaBOM We h d . . tati th t
or A-SOM. The system was trained and tested with multiple € have done some previous experimentation with tex-

samples gained from the exploration of a set of 4 softand 4 her ~ ture/hardness perception [11]. In this experiments wedst
objects of different materials with varying textural properties. hardness and texture sensors together with a self-orggnizi

The system successfully. found representations of thg tex®l  gystems that develops monomodal as well as bimodal rep-
and hardness submodalities and also learned to associateee  yagentations of texture and hardness. Our other previous
with each other. . . . .
research on haptic perception has resulted in the design and
I. INTRODUCTION implementation of a number of versions of three different

An efficient multimodal perceptual system should be ab@/orkmg_hap.tlc system;. The first system [7] was a .system
to associate different modalities and submodalities watthe for haptic size perception. _It used a s_|mple three-fingered
other. This provides an ability to activate the subsystedPPOt hand, the LUCS Haptic Hand I, with the thumb as the
for a modality even when its sensory input is limited o®Nly movable part. The LUCS Haptic Hand | was equipped
nonexistent as long as there are activities in subsystertdh 9 piezo electric tactile sensors. This system used self
for other modalities, which the subsystem has learned fyganizing maps (SOMS) [12] and a neural network V,V'th
associate with certain patterns of activity, which usuall;l/eaky integrators and it successfully I(_aarned _to categaaiz
comes together with the patterns of activity in the othe}eSt set of spheres and cubes according to size.

subsystems. For example, in humans the sensory information] '€ Second system [8] was a system for haptic shape

gained when the texture of an object is felt in the pocke?€rception and used a three-fingered 8 d.o.f. robot hand, the
can invoke visual images of the object or a feeling for it"YCS Haptic Hand II, equipped with a wrist for horizontal
hardness. rotation and a mechanism for vertical re-positioning. This

To study the association of different submodalities WéObOt hand was equipped with 45 piezo electric tactile

used the two haptic submodalities texture and hardness, thiFsors. This system _used active explorations of the (Sbje_Ct
gaining experience with these submodalities in robotics & S€veral grasps with the robot hand to gather tactile
well. There have been some previous studies of texture aHHormanon, which togeth(_er with the posmonmg cor_nmands
hardness in robotics. For example, Hosoda et al [6] haJ@ the actuators (thus a k_|nd of pseudoprqprloce_ptlon) were
built an anthropomorphic fingertip with distributed reamst cross-coded by, depending on the version, either tensor
consisting of two silicon rubber layers of different hardse product (outer p_roduct) operations or a novel neural ndiwor
The silicon rubber layers contain two different sensorgjist € Tensor Multiple Peak SOM (T-MPSOM) [8]. The cross-
gauges and polyvinylidene fluoride films, which yield signal €0ded information was categorized by a SOM. The system
that enabled the discrimination of five different material$Uccessfully learned to discriminate between differeapsts

pushed and rubbed by the fingertip. Mayol-Cuevas et as well as betvyeen different objects within a shap(_e category
[14] describes a system for tactile texture recognitionicvh when tes_ted with a set of sphere_s ' _bIOC_kS and cyllnde_rs_.
employs a sensing pen with a microphone that is manuall The third system [9] was a p|0-|nsp|red _self-orgamzmg
rubbed over the explored materials. The system uses a supdfStem for haptic shape and size perception based solely

vised Learning Vector Quantization (LVQ) classifier systen’?n proprioce_ptive da_ta from a 12 d.of. anthropomorphic
to identify with 93% accuracy 18 common materials aftefobot hand with proprioceptive sensors [10]. The system was

signal processing with the Fast Fourier Transform (FFT)t.r_"’“necj with 10 dlfferent_ objects of d|ffer(_ant SIzes frormt_w_
different shape categories and tested with both the trginin
Magnus Johnsson is with the Department of Computer Scienceet and a novel set with 6 previously unused objects. It was
and Lund University Cognitive Science, Lund University, &len gple to discriminate the shape as well as the size of the
Magnus. Johnsson@ ucs. | u. se bi in both th iqinal . d th f
Christian Balkenius is with Lund University Cognitive Scie, Lund objects In both the original training set ana the set of new
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Associated
SOM or A-SOM

This paper explores a bio-inspired self-organizing textur
and hardness perception system, which automatically $ear
to associate the representations of the two submodaliti
with each other. The system is based on a novel varia
of the SOM, called Associative Self-Organizing Map (A- O
SOM), and it employs a microphone based texture sens
and a hardness sensor that measures the compression of
material at a constant pressure. The system is bio-inspir
in the sense that it employs a variation of the SOM tc () O
represent the two submodalities texture and hardness, &
the SOM shares many features with brain maps [13]. It i
also bio-inspired in the sense that different submodalitet
are integrated. That different submodaliteter are integra
in unimodal association areas in the human brain is a we
established fact [15]. The texture sensor is also bio-nespi
Our system is based on the transduction of vibrations from B ) o
a metal edge and which are transmitted to a microphone. E’égljrgﬁ inT;]e A(:-%rgﬁc%giv%fst?vsoi}ﬁgsMofnﬁmTkérquiT\% gﬂgff‘ﬁ:

humans the mechanoreceptors respond to vibrations as wellive input, which correspond to the input an ordinary S@¥eives. The
[5]. other kind of input is the activity of each neuron in an ass@t SOM
or A-SOM. In the fully trained A-SOM, activity can be trigget by either
native input or by activity in the associated SOM or A-SOM barth.

A-SOM

Il. A-SOM
The A-SOM (Fig. 1) can be considered as a Self-

Organizing Map (SOM) [12] which learns to associatgyhere 0 < a(t) < 1 is the adaptation strength with
fixed number of neurons and a fixed topology. Each neuron

ni; is associated with two weight vectors); € R™ and Tpe weightsw?., are adapted by

wy € R™ wherem equals the number of neurons in an !

external A-SOM or SOM.wg; is initialized randomly to

b _ b b nput extern
numbers betweefl and 1, whereas all elements af?; are ~ “ijt (t+1) = wyy () + By (1) [yij (t) =y ()] ()

initialized to 0.

At time ¢ each neurom;; receives two normalized input

vectorsz®(t) € R™ andz®(t) € R™.

The neurornc associated with the weight vectar? (¢t) most
similar to the input vector:(t) is selected:

¢ = arg max{||z*(t)wg ()][} @)
The activity in the neurom;; is given by
yig(8) = [yl @) + yem )] /2 @
where
yii ™ () = G(lInij — el ©)
and
YT () = 2 (w; (t) (4)
G() is a Gaussian function with/(0) = 1, and|| - || is the

Euclidean distance between two neurons.

The weightswy,, are adapted by

wiz(t+1) = wi () + a(t)Gije(t) [24(t) — wi(t)] (5)

where 3 is the constant adaptation strength.

I1l. SENSORS IN THE EXPERIMENT

The system discussed in this paper employs two sensors
(Fig. 2) developed at Lund University Cognitive Science
(LUCS). One of these sensors is a texture sensor and the
other is a hardness sensor.

The texture sensor consists of a capacitor microphone with
a tiny metal edge mounted at the end of a moveable lever,
which in turn is mounted on an RC servo. When exploring
a material the lever is turned by the RC servo, which moves
the microphone with the attached metal edge along a curved
path in the horizontal plane. This makes the metal edge
slide over the explored material, which creates vibrations
the metal edge with frequencies that depend on the textural
properties of the material. The vibrations are transfetced
the microphone since there is contact between it and the
metal edge. The signals are then sampled and digitalized
by a NiDag 6008 (National Instruments) and conveyed to
a computer via a USB-port. The FFT is then applied to
the input, thus yielding a spectrogram of 2049 component
frequencies.

The hardness sensor consists of a stick mounted on a RC
servo. During the exploration of a material the RC servo
tries to move to a certain position, which causes a downward
movement of the connected stick at a constant pressure. In
the control circuit inside the RC servo there is a variable



this movement the vibrations from the metal edge (Fig. 2b)
slid over the object are recorded by the microphone (Fig. 2a)
mounted at the end of the stick.

The output from the texture sensor from all these explo-
rations has then been written to a file after the application o
the FFT. Likewise the output from the hardness sensor has
been written to a file represented as binary numbers. The
hardness samples can be considered to be binary vectors of
length 18 whereas the texture samples can be considered to
be vectors of length 2049. The eight objects have various
kinds of texture and can be divided into two groups, one
with four rather soft objects and one with four rather hard
objects. During the exploration, the objects were fixed & th
same location under the sensors.

V. EXPERIMENT

Our system is a bimodal model of haptic hardness and tex-
ture perception (Fig. 3). It consists of two monomodal sub-
systems (hardness and texture), which develop monomodal
Fig. 2. The texture and hardness sensors while exploringeepf foam representations (A-SOMs) that are associated with each
rubber. The texture sensor consists of a capacitor micropha) with a other. The subsystem for hardness uses the raw sensor
metal edge (b) mounted at the end of a moveable lever (c),haihicurn ) .
is mounted on a RC servo. The hardness sensor consists ofka(gli OUtput from the hardness sensor, represented as a binary
mounted on a RC servo. The servo belonging to the hardnessrseontains  number with 18 bits and conveys it to an A-SOM with

a variable resistor that provides a measure of the turnintpefervo, and % ini i _ i
thus the displacement of the stick, which is proportionaht® compression 15 x 15 neurons. After training, this A-SOM wil represent

of the explored material. The actuators are controlled B8&&-32 controller  the hardness property of the explored objects.
board (Lynxmotion Inc.). The measure of the resistance ef variable In the subsystem for texture, the raw sensor output from

resistor in the RC servo for the hardness sensor and thephione signal of - the texture sensor is transformed by a FFT module into a

the texture sensor are digitalized using a NiDaq 6008 (Matitnstruments) i .

and conveyed to the computer via a USB-port. spectrogram containing 2049 frequencies, and the spectro-
gram which is represented by a vector, is in turn conveyed
to an A-SOM with15 x 15 neurons. After training, this A-

resistor that provides the control circuit with informatio SOM will represent the textural properties of the explored

whether the RC servo has reached the wanted position or nobjects.

In our design, we measure the value of this variable resistor The two subsystems are coupled to each other in that their

at the end of the exploration of the material and thus get &-SOMSs also receive their respective activities as asfuveia

measure of the end position of the stick in the explorationnput.

This end position is proportional to the compression of Both A-SOMs begun their training with the neighbour-

the explored material. The value of the variable resistor isood radius equal td5. The neighbourhood radius was

conveyed to a computer and represented in binary form. decreased at each iteration by multiplication with98 until

The actuators for both the sensors are controlled froit reached the minimum neighbourhood size 1. Both A-

the computer via a SSC-32 controller board (LynxmotiotsOMs started out withn(0) = 0.1 and decreased it by

Inc.). The software for the system presented in this papenultiplication with 0.9999. 3 where set t00.35 for both

is developed in C++ and runs within the Ikaros systemh\-SOMSs.

[1][2][10]. Ikaros provides an infrastructure for compute The system was trained with samples from the training set,

simulations of the brain and for robot control. described in the previous section, by 2000 iterations leefor

evaluation.
IV. EXPLORATION OF OBJECTS

The system described in this paper have been trained VI. RESULTS AND DISCUSSION
and tested with two sets of samples. One set consists ofThe results of the experiment are depicted in Fig. 4. The
40 samples of texture data and the other set consists of 80images depict the centres of activation when the fully
samples of hardness data. These sets have been construtit@ded system was tested with the test set (described above
by letting the sensors explore each of the eight objectnstructed with the aid of the objects a-h in Table 1. Images
described in Table 1 five times. 4A, 4B and 4C correspond to the texture representing A-

During the hardness exploration of an object the tip of th&0OM. Likewise the images 4D, 4E and 4F correspond to
hardness sensor stick (Fig. 2d) is pressed against thetobjdte hardness representing A-SOM. Each cell in an image
with a constant force and the displacement is measured. represents a neuron in the A-SOM. In the images 4A, 4B,

The exploration with the texture sensor is done by lettingD and 4E there are black circles in some of the cells. This
its lever (Fig. 2c) turn 36 degrees during one second. Duringeans that the corresponding neurons in the A-SOM are the




TABLE |
THE EIGHT OBJECTS USED IN THE EXPERIMENTTHE OBJECTS AH WERE USED BOTH FOR TRAINING AND TESTING THE MATERIALS OF THE

OBJECTS ARE PRESENTED AND THEY ARE SUBJECTIVELY CLASSIFIESS EITHER HARD OR SOFT BY THE AUTHORSA ROUGH SUBJECTIVE
ESTIMATION OF THEIR TEXTURAL PROPERTIES IS ALSO PROVIDED

Label | Object Estimated Hardness$ Estimated Texture
a Foam Rubber Soft Somewhat Fine

b Hardcover Book Hard Shiny

c Bundle of Paper Hard Fine

d Cork Doily Hard Rough

e Wood Doily Hard Fine

f Bundle of Denim Soft Somewhat Fine

g Bundle of Cotton Fabric| Soft Somewhat Fine

h Terry Cloth Fabric Soft Rough

A-SOM A-SOM
Texture Hardness

FFT

Texture Hardness
Sensor Sensor

Fig. 3. Schematic depiction over the architecture of thetibdpardness
and texture perception system. The system consists of twmmodal sub-
systems, which develop monomodal representations (A-@#Msardness
and texture that learn to associate their activities. Thertess subsystem
uses the raw sensor output from the hardness sensor as mput A-
SOM, which finds a representation of the hardness properntiyeoéxplored
objects. The texture subsystem transforms the raw sensdayly the aid
of a FFT module and then forwards it to another A-SOM, whictddima
representation of the textural properties of the explorbpats. The two
A-SOMs learn to associate their respective activities.

with the hardness and texture sensors together with osdinar
SOMs [11]. The encirclings are also present in the other four
images. This is so because we want to show how the A-
SOMs are activated when there are both native and external
input provided to the system (4B and 4E), and when there
are only external input provided (4C and 4F). External input
should be understood as hardness input in the case of the
texture representing A-SOM, and as texture input in the case
of the hardness representing A-SOM.

Fig. 4A depicts the texture representing A-SOM in the
fully trained system when tested with the test set (onlyveati
texture input). As can be seen, most objects are mapped at
separate sites in the A-SOM (c, d, e, f, h). There are some
exceptions though, namely a, b and g. So the system is able
to discriminate between individual objects when provided
with native input only, although not perfectly.

The hardness representing A-SOM in the fully trained
system when tested with the test set (only native hardness
input), depicted in Fig. 4D, also maps different objects at
different sites in the A-SOM but not as good as the texture
representing A-SOM. The hardness representing A-SOM
recognizes b, f and h perfectly and blurs the other more or
less. However, the hardness representing A-SOM perfectly
discriminates hard from soft objects.

When the texture representing A-SOM receives native
texture input as well as external hardness input (as can be
seen in Fig. 4B) its activations are very similar to those in
Fig. 4A. Likewise when the hardness representing A-SOM
receives native hardness input as well as external texture
input (as can be seen in Fig. 4E) its activations are very
similar to those in Fig. 4D.

Fig. 4C depicts the activations in the texture representing
A-SOM when it receives only external hardness input. As
can be seen this external hardness input very often triggers

centre of activation for one or several of the samples in then activity similar to the activity following native textar
test set. The centres of activation from the samples in theput. Likewise Fig. 4F depicts the activity in the hardness
test set corresponding to each object in Tab 1 when onhgpresenting A-SOM when it receives only external texture
native input was provided have been encircled in 4A anohput. Even in this case the external input very often trigge
4D to show where different objects are mapped in the Aan activity similar to the activity following native inputhis
SOMs. Native input should be understood as texture inpmbeans that when just one modality in the system receives
for the texture representing A-SOM, and hardness input fanput, this can trigger activation in the other modality g&n

the hardness representing A-SOM. These results with onlg the activation in that modality when receiving nativeunp
native input to the A-SOMs are similar to our earlier result§hus an object explored by both sensors during training



of the system can trigger a more or less proper activaticsee if the A-SOM works equally good in that case. We
in the representations of both modalities even when it canill also try to implement an extended version of the A-
be explored by just one sensor during testing. However, &0M, which can be associated with several external A-SOMs
can be seen in Fig. 4C and Fig. 4F, the activity triggeredr SOMs. In this way we could build multimodal systems,
solely by external input does not map every sample properlwhich when receiving input from just one modality would
The worst cases are the objects ¢, d and g in the textutrégger proper activation patterns in the other modaliss
representing A-SOM (Fig. 4C) and the objects a, b and g iwell. This extension should be quite straightforward. Iltikco
the hardness representing A-SOM (Fig. 4D). As can be sebe done by just adding a new weight vector to each neuron
in Fig. 4D, the objects ¢, d and g are not distinguishablfor every new associated A-SOM or SOM. The activity of the
in the hardness representing A-SOM, and the objects a,ngurons would be calculated by adding the native activity an
and g are not distinguishable in the texture representing Ahe activities coming from all associated A-SOMs or SOMs
SOM (Fig. 4A). Thus the external activity patterns for thesand divide the sum with the total numbers of activities.
objects are overlapping and the receiving A-SOM cannot be Another very interesting continuation, since we focus
expected to learn to map these patterns correctly even if thauch of our research on haptics, would be to test this A-
objects where well separated by the A-SOM when it receiveBOM technology in systems that integrate visual and haptic
native input. subsystems. In this way we could probably get a visual
VIl. CONCLUSION system to trigger a proper apprehension of a robot hand,

) ] ) . in this very bio-inspired way, when it is about to grasp an
We have experimented with a bimodal self-organlzmg)bject_

system for object recognition, which is based on textural
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Fig. 4. The mapping of the objects used in the experiments.characters a-h refer to the objects in Table 1. The imag#®inppermost row correspond
to the texture representing A-SOM and the images in the lmwst row correspond to the hardness representing A-SOM Egltin an image represents
a neuron in the A-SOM, which consists 95 x 15 = 225 neurons. A filled circle in a cell is supposed to mean that ffzaticular neuron is the centre
of activation for one or several explorations. The occuwreenf a certain letter in the rightmost images means thaethee one or several centres of
activation for that particular object at that particulaag®. The centres of activation from the samples in the téstaeesponding to each object in Tab
1 when only native input was provided have been encirclechéninages. A: The texture representing A-SOM when testel néttive texture input.
Most objects are mapped at separate sites so the systeneisoatliscriminate between individual objects when providéth native input, although not
perfectly. B: The texture representing A-SOM when testeth wative texture input together with external hardnessitinfis activations are very similar
to those in A. C: The texture representing A-SOM when it neeionly external hardness input. This often triggers aivigctsimilar to the activity
following native texture input. D: The hardness represgnt\-SOM when tested with native hardness input maps difteobjects at different sites and it
perfectly discriminates hard from soft objects. E: The hass representing A-SOM when tested with native hardnges together with external texture
input. Its activations are very similar to those in D. F. thedmess representing A-SOM when it receives only extemdute input. This often triggers
an activity similar to the activity following native hardse input.



