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Abstract— We have experimented with a bio-inspired self-
organizing texture and hardness perception system which
automatically learns to associate the representations of the two
submodalities with each other. To this end we have developed
a microphone based texture sensor and a hardness sensor that
measures the compression of the material at a constant pressure.
The system is based on a novel variant of the Self-Organizing
Map (SOM), called Associative Self-Organizing Map (A-SOM).
The A-SOM both develops a representation of its input space
and learns to associate this with the activity in an externalSOM
or A-SOM. The system was trained and tested with multiple
samples gained from the exploration of a set of 4 soft and 4 hard
objects of different materials with varying textural properties.
The system successfully found representations of the texture
and hardness submodalities and also learned to associate these
with each other.

I. INTRODUCTION

An efficient multimodal perceptual system should be able
to associate different modalities and submodalities with each
other. This provides an ability to activate the subsystem
for a modality even when its sensory input is limited or
nonexistent as long as there are activities in subsystems
for other modalities, which the subsystem has learned to
associate with certain patterns of activity, which usually
comes together with the patterns of activity in the other
subsystems. For example, in humans the sensory information
gained when the texture of an object is felt in the pocket
can invoke visual images of the object or a feeling for its
hardness.

To study the association of different submodalities we
used the two haptic submodalities texture and hardness, thus
gaining experience with these submodalities in robotics as
well. There have been some previous studies of texture and
hardness in robotics. For example, Hosoda et al [6] have
built an anthropomorphic fingertip with distributed receptors
consisting of two silicon rubber layers of different hardness.
The silicon rubber layers contain two different sensors, strain
gauges and polyvinylidene fluoride films, which yield signals
that enabled the discrimination of five different materials
pushed and rubbed by the fingertip. Mayol-Cuevas et al
[14] describes a system for tactile texture recognition, which
employs a sensing pen with a microphone that is manually
rubbed over the explored materials. The system uses a super-
vised Learning Vector Quantization (LVQ) classifier system
to identify with 93% accuracy 18 common materials after
signal processing with the Fast Fourier Transform (FFT).
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Edwards et al [4] have used a vinyl record player with the
needle replaced with an artificial finger with an embedded
microphone to quantify textural features by using a group of
manufactured discs with different textural patterns. Campos
and Bajcsy [3] explored haptic Exploratory Procedures (EPs)
based on human haptic EPs proposed by Lederman and
Klatzky, among them an EP for hardness exploration in
which the applied force is measured for a given displacement.

We have done some previous experimentation with tex-
ture/hardness perception [11]. In this experiments we testour
hardness and texture sensors together with a self-organizing
systems that develops monomodal as well as bimodal rep-
resentations of texture and hardness. Our other previous
research on haptic perception has resulted in the design and
implementation of a number of versions of three different
working haptic systems. The first system [7] was a system
for haptic size perception. It used a simple three-fingered
robot hand, the LUCS Haptic Hand I, with the thumb as the
only movable part. The LUCS Haptic Hand I was equipped
with 9 piezo electric tactile sensors. This system used self-
organizing maps (SOMs) [12] and a neural network with
leaky integrators and it successfully learned to categorize a
test set of spheres and cubes according to size.

The second system [8] was a system for haptic shape
perception and used a three-fingered 8 d.o.f. robot hand, the
LUCS Haptic Hand II, equipped with a wrist for horizontal
rotation and a mechanism for vertical re-positioning. This
robot hand was equipped with 45 piezo electric tactile
sensors. This system used active explorations of the objects
by several grasps with the robot hand to gather tactile
information, which together with the positioning commands
to the actuators (thus a kind of pseudoproprioception) were
cross-coded by, depending on the version, either tensor
product (outer product) operations or a novel neural network,
the Tensor Multiple Peak SOM (T-MPSOM) [8]. The cross-
coded information was categorized by a SOM. The system
successfully learned to discriminate between different shapes
as well as between different objects within a shape category
when tested with a set of spheres, blocks and cylinders.

The third system [9] was a bio-inspired self-organizing
system for haptic shape and size perception based solely
on proprioceptive data from a 12 d.o.f. anthropomorphic
robot hand with proprioceptive sensors [10]. The system was
trained with 10 different objects of different sizes from two
different shape categories and tested with both the training
set and a novel set with 6 previously unused objects. It was
able to discriminate the shape as well as the size of the
objects in both the original training set and the set of new
objects.



This paper explores a bio-inspired self-organizing texture
and hardness perception system, which automatically learns
to associate the representations of the two submodalities
with each other. The system is based on a novel variant
of the SOM, called Associative Self-Organizing Map (A-
SOM), and it employs a microphone based texture sensor
and a hardness sensor that measures the compression of the
material at a constant pressure. The system is bio-inspired
in the sense that it employs a variation of the SOM to
represent the two submodalities texture and hardness, and
the SOM shares many features with brain maps [13]. It is
also bio-inspired in the sense that different submodaliteter
are integrated. That different submodaliteter are integrated
in unimodal association areas in the human brain is a well
established fact [15]. The texture sensor is also bio-inspired.
Our system is based on the transduction of vibrations from
a metal edge and which are transmitted to a microphone. In
humans the mechanoreceptors respond to vibrations as well
[5].

II. A-SOM

The A-SOM (Fig. 1) can be considered as a Self-
Organizing Map (SOM) [12] which learns to associate
the activity of an external A-SOM or SOM with its own
activity. It consists of anI × J grid of neurons with a
fixed number of neurons and a fixed topology. Each neuron
nij is associated with two weight vectorswa

ij ∈ Rn and
wb

ij ∈ Rm where m equals the number of neurons in an
external A-SOM or SOM.wa

ij is initialized randomly to
numbers between0 and1, whereas all elements ofwb

ij are
initialized to 0.

At time t each neuronnij receives two normalized input
vectorsxa(t) ∈ Rn andxb(t) ∈ Rm.

The neuronc associated with the weight vectorwa
c (t) most

similar to the input vectorxa(t) is selected:

c = arg maxc{||x
a(t)wa

c (t)||} (1)

The activity in the neuronnij is given by

yij(t) =
[

yinput
ij (t) + yextern

ij (t)
]

/2 (2)

where

yinput
ij (t) = G(‖nij − c‖) (3)

and

yextern
ij (t) = xb(t)wb

ij(t) (4)

G() is a Gaussian function withG(0) = 1, and‖ · ‖ is the
Euclidean distance between two neurons.

The weightswa
ijk are adapted by

wa
ijk(t + 1) = wa

ijk(t) + α(t)Gijc(t)
[

xa
k(t) − wa

ijk(t)
]

(5)

Fig. 1. The connectivity of the A-SOM network. During training each
neuron in an A-SOM receives two kinds of input. One kind of input is the
native input, which correspond to the input an ordinary SOM receives. The
other kind of input is the activity of each neuron in an associated SOM
or A-SOM. In the fully trained A-SOM, activity can be triggered by either
native input or by activity in the associated SOM or A-SOM, orboth.

where 0 ≤ α(t) ≤ 1 is the adaptation strength with
α(t) → 0 when t → ∞ and the neighbourhood function
Gijc(t) is a Gaussian function decreasing with time.

The weightswb
ijl are adapted by

wb
ijl(t+1) = wb

ijl(t)+βxb
l (t)

[

yinput
ij (t) − yextern

ij (t)
]

(6)

whereβ is the constant adaptation strength.

III. SENSORS IN THE EXPERIMENT

The system discussed in this paper employs two sensors
(Fig. 2) developed at Lund University Cognitive Science
(LUCS). One of these sensors is a texture sensor and the
other is a hardness sensor.

The texture sensor consists of a capacitor microphone with
a tiny metal edge mounted at the end of a moveable lever,
which in turn is mounted on an RC servo. When exploring
a material the lever is turned by the RC servo, which moves
the microphone with the attached metal edge along a curved
path in the horizontal plane. This makes the metal edge
slide over the explored material, which creates vibrationsin
the metal edge with frequencies that depend on the textural
properties of the material. The vibrations are transferredto
the microphone since there is contact between it and the
metal edge. The signals are then sampled and digitalized
by a NiDaq 6008 (National Instruments) and conveyed to
a computer via a USB-port. The FFT is then applied to
the input, thus yielding a spectrogram of 2049 component
frequencies.

The hardness sensor consists of a stick mounted on a RC
servo. During the exploration of a material the RC servo
tries to move to a certain position, which causes a downward
movement of the connected stick at a constant pressure. In
the control circuit inside the RC servo there is a variable



Fig. 2. The texture and hardness sensors while exploring a piece of foam
rubber. The texture sensor consists of a capacitor microphone (a) with a
metal edge (b) mounted at the end of a moveable lever (c), which in turn
is mounted on a RC servo. The hardness sensor consists of a stick (d)
mounted on a RC servo. The servo belonging to the hardness sensor contains
a variable resistor that provides a measure of the turning ofthe servo, and
thus the displacement of the stick, which is proportional tothe compression
of the explored material. The actuators are controlled via aSSC-32 controller
board (Lynxmotion Inc.). The measure of the resistance of the variable
resistor in the RC servo for the hardness sensor and the microphone signal of
the texture sensor are digitalized using a NiDaq 6008 (National Instruments)
and conveyed to the computer via a USB-port.

resistor that provides the control circuit with information
whether the RC servo has reached the wanted position or not.
In our design, we measure the value of this variable resistor
at the end of the exploration of the material and thus get a
measure of the end position of the stick in the exploration.
This end position is proportional to the compression of
the explored material. The value of the variable resistor is
conveyed to a computer and represented in binary form.

The actuators for both the sensors are controlled from
the computer via a SSC-32 controller board (Lynxmotion
Inc.). The software for the system presented in this paper
is developed in C++ and runs within the Ikaros system
[1][2][10]. Ikaros provides an infrastructure for computer
simulations of the brain and for robot control.

IV. EXPLORATION OF OBJECTS

The system described in this paper have been trained
and tested with two sets of samples. One set consists of
40 samples of texture data and the other set consists of 40
samples of hardness data. These sets have been constructed
by letting the sensors explore each of the eight objects
described in Table 1 five times.

During the hardness exploration of an object the tip of the
hardness sensor stick (Fig. 2d) is pressed against the object
with a constant force and the displacement is measured.

The exploration with the texture sensor is done by letting
its lever (Fig. 2c) turn 36 degrees during one second. During

this movement the vibrations from the metal edge (Fig. 2b)
slid over the object are recorded by the microphone (Fig. 2a)
mounted at the end of the stick.

The output from the texture sensor from all these explo-
rations has then been written to a file after the application of
the FFT. Likewise the output from the hardness sensor has
been written to a file represented as binary numbers. The
hardness samples can be considered to be binary vectors of
length 18 whereas the texture samples can be considered to
be vectors of length 2049. The eight objects have various
kinds of texture and can be divided into two groups, one
with four rather soft objects and one with four rather hard
objects. During the exploration, the objects were fixed in the
same location under the sensors.

V. EXPERIMENT

Our system is a bimodal model of haptic hardness and tex-
ture perception (Fig. 3). It consists of two monomodal sub-
systems (hardness and texture), which develop monomodal
representations (A-SOMs) that are associated with each
other. The subsystem for hardness uses the raw sensor
output from the hardness sensor, represented as a binary
number with 18 bits and conveys it to an A-SOM with
15 × 15 neurons. After training, this A-SOM will represent
the hardness property of the explored objects.

In the subsystem for texture, the raw sensor output from
the texture sensor is transformed by a FFT module into a
spectrogram containing 2049 frequencies, and the spectro-
gram which is represented by a vector, is in turn conveyed
to an A-SOM with15 × 15 neurons. After training, this A-
SOM will represent the textural properties of the explored
objects.

The two subsystems are coupled to each other in that their
A-SOMs also receive their respective activities as associative
input.

Both A-SOMs begun their training with the neighbour-
hood radius equal to15. The neighbourhood radius was
decreased at each iteration by multiplication with0.998 until
it reached the minimum neighbourhood size 1. Both A-
SOMs started out withα(0) = 0.1 and decreased it by
multiplication with 0.9999. β where set to0.35 for both
A-SOMs.

The system was trained with samples from the training set,
described in the previous section, by 2000 iterations before
evaluation.

VI. RESULTS AND DISCUSSION

The results of the experiment are depicted in Fig. 4. The
6 images depict the centres of activation when the fully
trained system was tested with the test set (described above)
constructed with the aid of the objects a-h in Table 1. Images
4A, 4B and 4C correspond to the texture representing A-
SOM. Likewise the images 4D, 4E and 4F correspond to
the hardness representing A-SOM. Each cell in an image
represents a neuron in the A-SOM. In the images 4A, 4B,
4D and 4E there are black circles in some of the cells. This
means that the corresponding neurons in the A-SOM are the



TABLE I

THE EIGHT OBJECTS USED IN THE EXPERIMENT. THE OBJECTS A-H WERE USED BOTH FOR TRAINING AND TESTING. THE MATERIALS OF THE

OBJECTS ARE PRESENTED AND THEY ARE SUBJECTIVELY CLASSIFIEDAS EITHER HARD OR SOFT BY THE AUTHORS. A ROUGH SUBJECTIVE

ESTIMATION OF THEIR TEXTURAL PROPERTIES IS ALSO PROVIDED.

Label Object Estimated Hardness Estimated Texture
a Foam Rubber Soft Somewhat Fine
b Hardcover Book Hard Shiny
c Bundle of Paper Hard Fine
d Cork Doily Hard Rough
e Wood Doily Hard Fine
f Bundle of Denim Soft Somewhat Fine
g Bundle of Cotton Fabric Soft Somewhat Fine
h Terry Cloth Fabric Soft Rough

Hardness 

Sensor

A-SOM 

Hardness

FFT

A-SOM 

Texture

Texture 

Sensor

Fig. 3. Schematic depiction over the architecture of the haptic hardness
and texture perception system. The system consists of two monomodal sub-
systems, which develop monomodal representations (A-SOMs) of hardness
and texture that learn to associate their activities. The hardness subsystem
uses the raw sensor output from the hardness sensor as input to an A-
SOM, which finds a representation of the hardness property ofthe explored
objects. The texture subsystem transforms the raw sensory data by the aid
of a FFT module and then forwards it to another A-SOM, which finds a
representation of the textural properties of the explored objects. The two
A-SOMs learn to associate their respective activities.

centre of activation for one or several of the samples in the
test set. The centres of activation from the samples in the
test set corresponding to each object in Tab 1 when only
native input was provided have been encircled in 4A and
4D to show where different objects are mapped in the A-
SOMs. Native input should be understood as texture input
for the texture representing A-SOM, and hardness input for
the hardness representing A-SOM. These results with only
native input to the A-SOMs are similar to our earlier results

with the hardness and texture sensors together with ordinary
SOMs [11]. The encirclings are also present in the other four
images. This is so because we want to show how the A-
SOMs are activated when there are both native and external
input provided to the system (4B and 4E), and when there
are only external input provided (4C and 4F). External input
should be understood as hardness input in the case of the
texture representing A-SOM, and as texture input in the case
of the hardness representing A-SOM.

Fig. 4A depicts the texture representing A-SOM in the
fully trained system when tested with the test set (only native
texture input). As can be seen, most objects are mapped at
separate sites in the A-SOM (c, d, e, f, h). There are some
exceptions though, namely a, b and g. So the system is able
to discriminate between individual objects when provided
with native input only, although not perfectly.

The hardness representing A-SOM in the fully trained
system when tested with the test set (only native hardness
input), depicted in Fig. 4D, also maps different objects at
different sites in the A-SOM but not as good as the texture
representing A-SOM. The hardness representing A-SOM
recognizes b, f and h perfectly and blurs the other more or
less. However, the hardness representing A-SOM perfectly
discriminates hard from soft objects.

When the texture representing A-SOM receives native
texture input as well as external hardness input (as can be
seen in Fig. 4B) its activations are very similar to those in
Fig. 4A. Likewise when the hardness representing A-SOM
receives native hardness input as well as external texture
input (as can be seen in Fig. 4E) its activations are very
similar to those in Fig. 4D.

Fig. 4C depicts the activations in the texture representing
A-SOM when it receives only external hardness input. As
can be seen this external hardness input very often triggers
an activity similar to the activity following native texture
input. Likewise Fig. 4F depicts the activity in the hardness
representing A-SOM when it receives only external texture
input. Even in this case the external input very often triggers
an activity similar to the activity following native input.This
means that when just one modality in the system receives
input, this can trigger activation in the other modality similar
to the activation in that modality when receiving native input.
Thus an object explored by both sensors during training



of the system can trigger a more or less proper activation
in the representations of both modalities even when it can
be explored by just one sensor during testing. However, as
can be seen in Fig. 4C and Fig. 4F, the activity triggered
solely by external input does not map every sample properly.
The worst cases are the objects c, d and g in the texture
representing A-SOM (Fig. 4C) and the objects a, b and g in
the hardness representing A-SOM (Fig. 4D). As can be seen
in Fig. 4D, the objects c, d and g are not distinguishable
in the hardness representing A-SOM, and the objects a, b
and g are not distinguishable in the texture representing A-
SOM (Fig. 4A). Thus the external activity patterns for these
objects are overlapping and the receiving A-SOM cannot be
expected to learn to map these patterns correctly even if the
objects where well separated by the A-SOM when it received
native input.

VII. CONCLUSION

We have experimented with a bimodal self-organizing
system for object recognition, which is based on textural
and hardness input and with associated representations of
the two submodalities. The texture sensor employed is based
on the transmission of vibrations to a microphone when the
sensor slides over the surface of the explored material. The
hardness sensor is based on the measurement of displacement
of a stick when pressed against the material at a constant
pressure. The results are encouraging, both for the devel-
oped monomodal representations and the systems ability to
associate the activity in these representations. The system is
able to discriminate individual objects based on input from
each submodality and to discriminate hard from soft objects.
In addition input to one submodality can trigger an activation
pattern in the other submodality, which resembles the pattern
of activity the object would yield if explored with the sensor
for this other submodality.

Our experiments with texture complement those done by
Edwards et al [4] and Hosoda et al [6] because they only
show that the signals from their sensors are in principle
useful as texture sensors whereas we actually implement a
working self-organizing system. When compared to the work
done by Mayol-Cuevas et al [14] our texture experiments
differ in that we use a sensor that is not manually rubbed
over the material as their pen, but moved by an actuator built
into the sensor. A couple of extensions in our experiments
when compared to all the previously mentioned experiments
and to the work done by Campos and Bajcsy [3] are that we
also experimented with both hardness and texture and the
association between these two submodalities.

Because of the successful approach to base a texture sensor
on a microphone and base hardness perception on the mea-
surements of displacements at a constant applied pressure,
we will in the future try to integrate this approach with our
haptic systems. We will also continue our experimentations
with the A-SOM. We will continue by testing the ability
of the A-SOMs when there are very many categories to

see if the A-SOM works equally good in that case. We
will also try to implement an extended version of the A-
SOM, which can be associated with several external A-SOMs
or SOMs. In this way we could build multimodal systems,
which when receiving input from just one modality would
trigger proper activation patterns in the other modalitiesas
well. This extension should be quite straightforward. It could
be done by just adding a new weight vector to each neuron
for every new associated A-SOM or SOM. The activity of the
neurons would be calculated by adding the native activity and
the activities coming from all associated A-SOMs or SOMs
and divide the sum with the total numbers of activities.

Another very interesting continuation, since we focus
much of our research on haptics, would be to test this A-
SOM technology in systems that integrate visual and haptic
subsystems. In this way we could probably get a visual
system to trigger a proper apprehension of a robot hand,
in this very bio-inspired way, when it is about to grasp an
object.
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Fig. 4. The mapping of the objects used in the experiments. The characters a-h refer to the objects in Table 1. The images inthe uppermost row correspond
to the texture representing A-SOM and the images in the lowermost row correspond to the hardness representing A-SOM. Each cell in an image represents
a neuron in the A-SOM, which consists of15× 15 = 225 neurons. A filled circle in a cell is supposed to mean that thatparticular neuron is the centre
of activation for one or several explorations. The occurrence of a certain letter in the rightmost images means that there are one or several centres of
activation for that particular object at that particular place. The centres of activation from the samples in the test set corresponding to each object in Tab
1 when only native input was provided have been encircled in the images. A: The texture representing A-SOM when tested with native texture input.
Most objects are mapped at separate sites so the system is able to discriminate between individual objects when providedwith native input, although not
perfectly. B: The texture representing A-SOM when tested with native texture input together with external hardness input. Its activations are very similar
to those in A. C: The texture representing A-SOM when it receives only external hardness input. This often triggers an activity similar to the activity
following native texture input. D: The hardness representing A-SOM when tested with native hardness input maps different objects at different sites and it
perfectly discriminates hard from soft objects. E: The hardness representing A-SOM when tested with native hardness input together with external texture
input. Its activations are very similar to those in D. F. the hardness representing A-SOM when it receives only external texture input. This often triggers
an activity similar to the activity following native hardness input.


